zh.wikipedia.org/wiki/Bagging算法

Bagging算法 (英语:Bootstrap aggregating,引导聚集算法),又称装袋算法,是机器学习领域的一种团体学习算法。最初由Leo Breiman于1994年提出。Bagging算法可与其他分类回归算法结合,提高其准确率、稳定性的同时,通过降低结果的方差,避免过拟合的发生。

给定一个大小为训练集,Bagging算法从中均匀、有放回地(即使用自助抽样法)选出个大小为子集,作为新的训练集。在这个训练集上使用分类、回归等算法,则可得到{\displaystyle m}个模型,再通过取平均值、取多数票等方法,即可得到Bagging的结果。

http://machine-learning.martinsewell.com/ensembles/bagging/

【bootstrap samples 放回抽样 random samples with replacement】

Bagging (Breiman, 1996), a name derived from “bootstrap aggregation”, was the first effective method of ensemble learning and is one of the simplest methods of arching [1]. The meta-algorithm, which is a special case of the model averaging, was originally designed for classification and is usually applied to decision tree models, but it can be used with any type of model for classification or regression. The method uses multiple versions of a training set by using the bootstrap, i.e. sampling with replacement. Each of these data sets is used to train a different model. The outputs of the models are combined by averaging (in case of regression) or voting (in case of classification) to create a single output. Bagging is only effective when using unstable (i.e. a small change in the training set can cause a significant change in the model) nonlinear models.

https://www.packtpub.com/mapt/book/big_data_and_business_intelligence/9781787128576/7/ch07lvl1sec46/bagging--building-an-ensemble-of-classifiers-from-bootstrap-samples

Bagging is an ensemble learning technique that is closely related to the MajorityVoteClassifier that we implemented in the previous section, as illustrated in the following diagram:

However, instead of using the same training set to fit the individual classifiers in the ensemble, we draw bootstrap samples (random samples with replacement) from the initial training set, which is why bagging is also known as bootstrap aggregating. To provide a more concrete example of how bootstrapping works, let's consider the example shown in the following figure. Here, we have seven different training instances (denoted as indices 1-7) that are sampled randomly with replacement in each round of bagging. Each bootstrap sample is then used to fit a classifier, which is most typically an unpruned decision tree:

LOWESS (locally weighted scatterplot smoothing)  局部散点加权平滑】

LOESS and LOWESS thus build on "classical" methods, such as linear and nonlinear least squares regression. They address situations in which the classical procedures do not perform well or cannot be effectively applied without undue labor. LOESS combines much of the simplicity of linear least squares regression with the flexibility of nonlinear regression. It does this by fitting simple models to localized subsets of the data to build up a function that describes the deterministic part of the variation in the data, point by point. In fact, one of the chief attractions of this method is that the data analyst is not required to specify a global function of any form to fit a model to the data, only to fit segments of the data.

【用局部数据去逐点拟合局部--不用全局函数拟合模型--局部问题局部解决】

http://www.richardafolabi.com/blog/non-technical-introduction-to-random-forest-and-gradient-boosting-in-machine-learning.html

【A collective wisdom of many is likely more accurate than any one. Wisdom of the crowd – Aristotle, 300BC-】

bagging

gradient boosting

  • Ensemble model are great for producing robust, highly optimized and improved models.
  • Random Forest and Gradient Boosting are Ensembled-Based algorithms
  • Random Forest uses Bagging technique while Gradient Boosting uses Boosting technique.
  • Bagging uses multiple random data sampling for modeling while Boosting uses iterative refinement for modeling.
  • Ensemble models are not easy to interpret and they often work like a little back box.
  • Multiple algorithms must be minimally used to that the prediction system can be reasonably tractable.

Bootstrap aggregating Bagging 合奏 Ensemble Neural Network的更多相关文章

  1. Ensemble Learning: Bootstrap aggregating (Bagging) & Boosting & Stacked generalization (Stacking)

    Booststrap aggregating (有些地方译作:引导聚集),也就是通常为大家所熟知的bagging.在维基上被定义为一种提升机器学习算法稳定性和准确性的元算法,常用于统计分类和回归中. ...

  2. 读paper:Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, andScore-level Fusion for Face Recognition

    今天给大家带来一篇来自CVPR 2017关于人脸识别的文章. 文章题目:Deep Convolutional Neural Network using Triplets of Faces, Deep ...

  3. 【集成模型】Bootstrap Aggregating(Bagging)

    0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...

  4. 转载:bootstrap, boosting, bagging 几种方法的联系

    转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...

  5. bootstrap, boosting, bagging 几种方法的联系

    http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jack ...

  6. (转)关于bootstrap, boosting, bagging,Rand forest

    转自:https://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ...

  7. bootstrap, boosting, bagging

    介绍boosting算法的资源: 视频讲义.介绍boosting算法,主要介绍AdaBoosing http://videolectures.net/mlss05us_schapire_b/ 在这个站 ...

  8. 【DKNN】Distilling the Knowledge in a Neural Network 第一次提出神经网络的知识蒸馏概念

    原文链接 小样本学习与智能前沿 . 在这个公众号后台回复"DKNN",即可获得课件电子资源. 文章已经表明,对于将知识从整体模型或高度正则化的大型模型转换为较小的蒸馏模型,蒸馏非常 ...

  9. 【论文考古】知识蒸馏 Distilling the Knowledge in a Neural Network

    论文内容 G. Hinton, O. Vinyals, and J. Dean, "Distilling the Knowledge in a Neural Network." 2 ...

随机推荐

  1. 2017省选集训测试赛(二十五)Problem B recollection

    @(XSY)[后缀数组, 启发式合并, ST表] Description Solution 后缀数组 + 启发式合并 + Sparse Table. 这是第一次写树上后缀数组. 对以每个点为根的子树统 ...

  2. path.join 与 path.resolve 的区别

    1. 对于以/开始的路径片段,path.join只是简单的将该路径片段进行拼接,而path.resolve将以/开始的路径片段作为根目录,在此之前的路径将会被丢弃,就像是在terminal中使用cd命 ...

  3. Storage protocol stacks

    http://brasstacksblog.typepad.com/brass-tacks/ http://brasstacksblog.typepad.com/brass-tacks/2016/02 ...

  4. LeakCanary: 让内存泄露无所遁形

    LeakCanary: 让内存泄露无所遁形 09 May 2015 本文为LeakCanary: Detect all memory leaks!的翻译.原文在: https://corner.squ ...

  5. Solidworks如何改变零件颜色

    如图所示装配体有三个零件,现在我想把移动件的颜色变成红色   鼠标左键单击要改变颜色的零件(这里点击"移动件"),然后在弹出的菜单中选择颜色,最后点击"编辑颜色" ...

  6. AutoCAD如何设置A0A1图纸

    可以从网上下载相应的图纸模板,下载之后可以发现有相应的文字和模板文件   随后我们新建并找到这个dwt文件模板(比如要做一个A1的模板)   随后即可发现模板的样式,包括每种颜色的粗细,颜色和明细栏等 ...

  7. useradd umask报错 root用su 切换到普通用户提示输入密码并报密码错误

    添加新用户与以下文件有关联: /etc/default/useradd [root@localhost pam.d]# cat /etc/default/useradd # useradd defau ...

  8. android图片素材參考

    hpi:通常是大图像素是:480x800   (640*960)宽比长大致为0.6左右      一般240dpi.    小图的像素依据实际来. xhdi:一般大图像素是: 640x1136 (72 ...

  9. 身份证识别接口编写的JAVA调用示例

    此java文章是基本聚合数据证件识别接口来演示,基本HTTP POST请求上传图片并接收JSON数据来处理. 使用前你需要通过 https://www.juhe.cn/docs/api/id/153 ...

  10. JVM的GC简介和实例

    本文是一次内部分享中总结了jvm gc的分类和一些实例, 内容是introduction级别的,供初学人士参考.成文仓促,难免有些错误,如果有大牛发现,请留言,我一定及时更正,谢谢!JVM内存布局主要 ...