对于原有边,流区间是(1,inf),按着原边连,然后再连(s,i,(0,inf)),(i,t,(0,inf))表示任意位置进出雪场

按着这个建出新图

然后最小流的方法是先跑可行流,设ans为(t,s,(0,inf))的流量,然后取消这条边,跑从原来的t-s的最大流为ans2,答案就是ans-ans2

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=205;
int n,h[N],cnt=1,le[N],s,t,d[N],la0,la1;
struct qwe
{
int ne,to,va;
}e[N*N*10];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
void wk(int u,int v,int l,int r)
{
d[u]-=l,d[v]+=l;
ins(u,v,r-l);
}
bool bfs()
{
memset(le,0,sizeof(le));
queue<int>q;
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int r=0;
while(bfs())
r+=dfs(s,1e9);
return r;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
int m=read();
for(int j=1;j<=m;j++)
{
int x=read();
wk(i,x,1,1e5);
}
}
for(int i=1;i<=n;i++)
wk(n+1,i,0,1e5),wk(i,n+2,0,1e5);
s=0,t=n+3;
for(int i=1;i<=n+2;i++)
{
if(d[i]>0)
ins(s,i,d[i]);
else
ins(i,t,-d[i]);
}
la1=h[n+2];
add(n+2,n+1,1e9);
la0=h[n+1];
add(n+1,n+2,0);
dinic();
int ans=e[cnt].va;
h[n+2]=la1,h[n+1]=la0;
s=n+2,t=n+1;
printf("%d\n",ans-dinic());
return 0;
}

bzoj 2502: 清理雪道【有上下界有源汇最小流】的更多相关文章

  1. Bzoj 2502: 清理雪道 有上下界网络流_最小流

    好长时间没有写网络流了,感觉好手生.对于本题,设一个源点 $s$ 和 $t$.1.由 $s$ 向每个点连一条没有下界,容量为无限大的边,表示以该点为起点.2.由每个点向 $t$ 连一条没有下界,容量为 ...

  2. [BZOJ2502]清理雪道 有上下界网络流(最小流)

    2502: 清理雪道 Time Limit: 10 Sec  Memory Limit: 128 MB Description        滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场 ...

  3. 【BZOJ2502】清理雪道 有上下界的网络流 最小流

    [BZOJ2502]清理雪道 Description        滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降 ...

  4. BZOJ 2502: 清理雪道 | 有上下界最小流

    #include<cstdio> #include<algorithm> #include<cstring> #include<queue> #defi ...

  5. bzoj 3876: [Ahoi2014&Jsoi2014]支线剧情【有上下界有源汇最小费用最大流】

    每条边流量有下界有费用,很显然是有上下界有源汇最小费用最大流 连边(s,1,(0,inf),0),(i,t,(0,inf),0),表示从1出发inf次从每个点结束inf次 连边(i,j,(1,inf) ...

  6. bzoj 2055: 80人环游世界【有上下界有源汇最小费用最大流】

    连有上下界的边(ss,i,(0,m),0),(i',t,(0,m),0),表示从任意点开始和结束 连(i,j,(0,m),d[i][j]),表示可以买票飞过去 连(i,i',(v[i],v[i]),0 ...

  7. BZOJ 2502: 清理雪道

    BZOJ 2502: 清理雪道 标签(空格分隔): OI-BZOJ OI-最小流 OI-上下界网络流 Time Limit: 10 Sec Memory Limit: 128 MB Descripti ...

  8. HDU3157 Crazy Circuits(有源汇流量有上下界网络的最小流)

    题目大概给一个电路,电路上有n+2个结点,其中有两个分别是电源和负载,结点们由m个单向的部件相连,每个部件都有最少需要的电流,求使整个电路运转需要的最少电流. 容量网络的构建很容易,建好后就是一个有源 ...

  9. ZOJ 1314 Reactor Cooling | 上下界无源汇可行流

    ZOJ 1314 Reactor Cooling | 上下界无源汇可行流 题意 有一个网络,每条边有流量的上界和下界,求一种方案,让里面的流可以循环往复地流动起来. 题解 上下界无源汇可行流的模型: ...

随机推荐

  1. numpy函数库中一些经常使用函数的记录

    ##numpy函数库中一些经常使用函数的记录 近期才開始接触python,python中为我们提供了大量的库,不太熟悉.因此在<机器学习实战>的学习中,对遇到的一些函数的使用方法进行记录. ...

  2. Net Core环境开发与调试

    NET Core 包括.NET Core Runtime 和 .NET Core SDK: .NET Core = 应用运行依赖的 .NET Core Runtime .NET Core SDK = ...

  3. ECMAscript 没有对该方法进行标准化,因此反对使用它。 es 日期格式化

    JavaScript substr() 方法 http://www.w3school.com.cn/jsref/jsref_substr.asp 注释:substr() 的参数指定的是子串的开始位置和 ...

  4. Javascript - ERR_CONTENT_LENGTH_MISMATCH

    不知道做了什么,有两天没有跑vue项目啦,今天突然出现加载脚本的时候出现 ERR_CONTENT_LENGTH_MISMATCH这个错误, 所以我去搜索了一下  找到如下答案  http://stac ...

  5. Composite Pattern

    1.将对象组合成树形结构以表示“部分--整体”的层次结构.组合模式使得用户对单个对象和组合对象的使用具有一致性. 2.Composite 模式结构图 3.实现 #ifndef _COMPONENT_H ...

  6. 剑指Offer:树的子结构【26】

    剑指Offer:树的子结构[26] 题目描述 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) 解题思路 分为两步: 第一步:在树A中找到和树B的根节点的值一 ...

  7. 7-10 社交网络图中结点的“重要性”计算(30 point(s)) 【并查集+BFS】

    7-10 社交网络图中结点的"重要性"计算(30 point(s)) 在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来.他们受到这些关系的影响,这种影响可以理解为网络 ...

  8. Linux随笔-鸟哥Linux服务器篇学习总结(全)

    作者:Danbo 时间:2015-7-17 在runlevel3启动级别下默认启动网络挂载(autofs)机制,我们可以通过命令将其关闭:chkconfig autofs off 或者 /etc/in ...

  9. DNS常见攻击与防范

    DNS常见攻击与防范 转自:http://www.williamlong.info/archives/3813.html 日期:2015-7-10 随着网络的逐步普及,网络安全已成为INTERNET路 ...

  10. go 文件上传

    package main import ( "fmt" "io" "io/ioutil" "log" "net ...