POJ 1274 The Perfect Stall、HDU 2063 过山车(最大流做二分匹配)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 24081 | Accepted: 10695 |
Description
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
Input
Output
Sample Input
5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2
Sample Output
4
题目链接:POJ 1274
今天用做了这两道题才知道用最大流解决二分匹配的正确姿势 :首先不要一开始就往S、T这两个点里加边,因为很可能一个点会多次与S相连,那这样这个点总的流量就不是1了。
假设二分图的左半部分是集合$L_i$、右半部分是集合$R_i$,那么首先从$L_i$到$R_i$连一条流量为INF的边,然后将$L_i$与$R_i$记录到各自的集合里,然后各自去重,再从S到去重后的左集合中各点连一条容量为1的边,从右集合$R_i$中各点连向T也是一条容量为1的边,然后再跑最大流,代码是POJ的题目代码,HDU的把左边也去重就好了。
至于为什么可以这么做,显然对于左半部任意的点,从源点拿到手的流量只有1,即只能送给右半部的一个点,而且右半部流进汇点的容量也只有1,两边分别这样避免了一个人去匹配多个人或者一个人被多个人匹配的情况。想一想大概是这么个情况,但是中间边的容量为什么是INF,这两题只设1也是可以过的,不是很理解,感觉中间的流量在简单的二分图匹配里设为多少似乎没什么影响,只要大于1就行
代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=210<<1;
const int M=N*N*2;
struct edge
{
int to,nxt;
int cap;
};
edge E[M];
int head[N],tot;
int d[N];
vector<int>stall; void init()
{
CLR(head,-1);
tot=0;
stall.clear();
}
void add(int s,int t,int c)
{
E[tot].to=t;
E[tot].cap=c;
E[tot].nxt=head[s];
head[s]=tot++; E[tot].to=s;
E[tot].cap=0;
E[tot].nxt=head[t];
head[t]=tot++;
}
int bfs(int s,int t)
{
CLR(d,INF);
d[s]=0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int now=Q.front();
Q.pop();
for (int i=head[now]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(d[v]==INF&&E[i].cap)
{
d[v]=d[now]+1;
if(v==t)
return 1;
Q.push(v);
}
}
}
return d[t]!=INF;
}
int dfs(int s,int t,int f)
{
if(s==t||!f)
return f;
int ret=0;
for (int i=head[s]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(d[v]==d[s]+1&&E[i].cap>0)
{
int d=dfs(v,t,min(f,E[i].cap));
if(d>0)
{
E[i].cap-=d;
E[i^1].cap+=d;
f-=d;
ret+=d;
if(!f)
break;
}
}
}
if(!ret)
d[s]=-1;
return ret;
}
int dinic(int s,int t)
{
int ret=0;
while (bfs(s,t))
ret+=dfs(s,t,INF);
return ret;
}
int main(void)
{
int n,m,b,k,i;
while (~scanf("%d%d",&n,&m))
{
init();
int S=0,T=n+m+1;
for (i=1; i<=n; ++i)
{
scanf("%d",&k);
add(S,i,1);
while (k--)
{
scanf("%d",&b);
add(i,n+b,INF);
stall.push_back(b);
}
}
sort(stall.begin(),stall.end());
stall.erase(unique(stall.begin(),stall.end()),stall.end());
int R=stall.size();
for (i=0; i<R; ++i)
add(n+stall[i],T,1);
printf("%d\n",dinic(S,T));
}
return 0;
}
POJ 1274 The Perfect Stall、HDU 2063 过山车(最大流做二分匹配)的更多相关文章
- HDU 2063 过山车 第一道最大二分匹配
http://acm.hdu.edu.cn/showproblem.php?pid=2063 题目大意: m个女生和n个男生一起做过山车,每一排必须一男一女,而每个女孩愿意和一些男生坐一起,, 你要找 ...
- Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)
Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...
- poj——1274 The Perfect Stall
poj——1274 The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25709 A ...
- POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配
两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...
- hdu 2063 过山车(匈牙利算法模板)
http://acm.hdu.edu.cn/showproblem.php?pid=2063 过山车 Time Limit: 1000/1000 MS (Java/Others) Memory ...
- hdu 2063 过山车 二分匹配(匈牙利算法)
简单题hdu2063 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2063 过山车 Time Limit: 1000/1000 MS (Java/Ot ...
- hdu 2063 过山车(模板)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2063 过山车 Time Limit: 1000/1000 MS (Java/Others) Me ...
- [题解]poj 1274 The Perfect Stall(网络流)
二分匹配传送门[here] 原题传送门[here] 题意大概说一下,就是有N头牛和M个牛棚,每头牛愿意住在一些牛棚,求最大能够满足多少头牛的要求. 很明显就是一道裸裸的二分图最大匹配,但是为了练练网络 ...
- poj 1274 The Perfect Stall【匈牙利算法模板题】
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20874 Accepted: 942 ...
随机推荐
- AdminLTE 2 开源模版
AdminLTE 2 开源模版: 1. 文档 https://almsaeedstudio.com/themes/AdminLTE/documentation/index.html 2. 代码 ...
- [Linux]系统调用理解(2)
本文介绍了Linux下的进程概念,并着重讲解了与Linux进程管理相关的4个重要系统调用getpid,fork,exit和_exit,辅助一些例程说明了它们的特点和使用方法. 关于进程的一些必要知识 ...
- MySQL 5.5安装记录
安装gnake ./configure && gmake && gmake install 安装ncurses-devel yum install -y ncurses ...
- MySQL通过增加用户实现远程连接数据库
命令行进入mysql.exe所在目录 mysql -uroot -padmin 例子: grant all privileges on *.* to joe@localhost identified ...
- Centos7 修改mysql指定用户的密码
1.登陆mysql或者mariadb(两种任选其一) [root@localhost ~]# mysql -u root [root@localhost ~]# mysql -uroot -p 2.切 ...
- iOS之自定义控件
一.使用纯代码方式 initWithFrame:中添加子控件 layoutSubViews中设置子控件的fame 对外设置数据接口,重写setter方法给子控件设置数据显示 在的viewControl ...
- Pfile VS Spfile (MOS Note 249664.1)
============================================================================== Until Oracle 8i DBAs ...
- 浅谈HTTP事务的一个过程
一个腾讯在职的朋友问道,当我们在浏览器的地址栏输入 www.baidu.com ,然后回车,这一瞬间页面发生了什么?下面以谷歌浏览器一一解释. 一.域名解析 首先Chrome浏览器会解析www.bai ...
- java单例模式详解
饿汉法 饿汉法就是在第一次引用该类的时候就创建对象实例,而不管实际是否需要创建.代码如下: public class Singleton { private static Singleton = ne ...
- label、input、table标签
<label>标签 <form> <label for="male">Male</label> <input type=&qu ...