准确率,召回率,F值
下面简单列举几种常用的推荐系统评测指标:
1、准确率与召回率(Precision & Recall)
准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率;召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率。
一般来说,Precision就是检索出来的条目(比如:文档、网页等)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了。
正确率、召回率和 F 值是在鱼龙混杂的环境中,选出目标的重要评价指标。不妨看看这些指标的定义先:
1. 正确率 = 提取出的正确信息条数 / 提取出的信息条数
2. 召回率 = 提取出的正确信息条数 / 样本中的信息条数
两者取值在0和1之间,数值越接近1,查准率或查全率就越高。
3. F值 = 正确率 * 召回率 * 2 / (正确率 + 召回率) (F 值即为正确率和召回率的调和平均值)
不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:
正确率 = 700 / (700 + 200 + 100) = 70%
召回率 = 700 / 1400 = 50%
F值 = 70% * 50% * 2 / (70% + 50%) = 58.3%
不妨看看如果把池子里的所有的鲤鱼、虾和鳖都一网打尽,这些指标又有何变化:
正确率 = 1400 / (1400 + 300 + 300) = 70%
召回率 = 1400 / 1400 = 100%
F值 = 70% * 100% * 2 / (70% + 100%) = 82.35%
由此可见,正确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。
当然希望检索结果Precision越高越好,同时Recall也越高越好,但事实上这两者在某些情况下有矛盾的。比如极端情况下,我们只搜索出了一个结果,且是准确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么比如Recall是100%,但是Precision就会很低。因此在不同的场合中需要自己判断希望Precision比较高或是Recall比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。
2、综合评价指标(F-Measure)
P和R指标有时候会出现的矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure(又称为F-Score)。
F-Measure是Precision和Recall加权调和平均:
当参数α=1时,就是最常见的F1,也即
可知F1综合了P和R的结果,当F1较高时则能说明试验方法比较有效。
3、E值
E值表示查准率P和查全率R的加权平均值,当其中一个为0时,E值为1,其计算公式:
b越大,表示查准率的权重越大。
4、平均正确率(Average Precision, AP)
平均正确率表示不同查全率的点上的正确率的平均。
原文链接:http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/
本文链接:https://i.cnblogs.com/EditPosts.aspx?postid=8390391
准确率,召回率,F值的更多相关文章
- 准确率,召回率,F值,ROC,AUC
度量表 1.准确率 (presion) p=TPTP+FP 理解为你预测对的正例数占你预测正例总量的比率,假设实际有90个正例,10个负例,你预测80(75+,5-)个正例,20(15+,5-)个负例 ...
- 查全率(召回率)、精度(准确率)和F值
文献中的recall rate(查全率或召回率) and precision(精度)是很重要的概念.可惜很多中文网站讲的我都稀里糊涂,只好用google查了个英文的,草翻如下:召回率和精度定义: 从一 ...
- 机器学习笔记--classification_report&精确度/召回率/F1值
https://blog.csdn.net/akadiao/article/details/78788864 准确率=正确数/预测正确数=P 召回率=正确数/真实正确数=R F1 F1值是精确度和召回 ...
- 分类器评估方法:精确度-召回率-F度量(precision-recall-F_measures)
注:本文是人工智能研究网的学习笔记 Precision和Recall都能够从下面的TP,TN,FP,FN里面计算出来. 几个缩写的含义: 缩写 含义 P condition positive N co ...
- 准确率、精确率、召回率、F1
在搭建一个AI模型或者是机器学习模型的时候怎么去评估模型,比如我们前期讲的利用朴素贝叶斯算法做的垃圾邮件分类算法,我们如何取评估它.我们需要一套完整的评估方法对我们的模型进行正确的评估,如果模型效果比 ...
- fashion_mnist 计算准确率、召回率、F1值
本文发布于 2020-12-27,很可能已经过时 fashion_mnist 计算准确率.召回率.F1值 1.定义 首先需要明确几个概念: 假设某次预测结果统计为下图: 那么各个指标的计算方法为: A ...
- 准确率P 召回率R
Evaluation metricsa binary classifier accuracy,specificity,sensitivety.(整个分类器的准确性,正确率,错误率)表示分类正确:Tru ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
yu Code 15 Comments 机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...
- 机器学习 F1-Score 精确率 - P 准确率 -Acc 召回率 - R
准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候 ...
- 信息检索(IR)的评价指标介绍 - 准确率、召回率、F1、mAP、ROC、AUC
原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常 ...
随机推荐
- 山寨今日头条的标题title效果
山寨今日头条的标题title效果 效果: 源码: // // ViewController.m // 今日头条 // // Created by YouXianMing on 14/11/26. // ...
- Windows 7 添加快速启动栏
1.右击任务栏空白处,选择 “工具栏” ,单击 “新建工具栏” 2.输入 以下路径: %userprofile%\AppData\Roaming\Microsoft\Internet Explorer ...
- windows下PyCharm安装及使用
一.首先安装pycharm,可以参考这篇文章:http://www.jianshu.com/p/042324342bf4 1.win10_X64,其他Win版本也可以. 2.PyCharm版本:Pro ...
- 【Excel】如何用SUMIF实现SUMIFS的功能
如何用SUMIF实现SUMIFS的功能 添加辅助列,辅助列内容为"条件区域1内容+条件区域内容2" 举个例子,我要挑选出"二车间"的"过桥过路费& ...
- 张高兴的 Windows 10 IoT 开发笔记:FM 电台模块 KT0803L
This is a Windows 10 IoT Core project on the Raspberry Pi 2/3, coded by C#. GitHub:https://github.co ...
- JavaScript的DOM操作获取元素周边大小
一.clientLeft 和 clientTop 这组属性可以获取元素设置了左边框和上边框的大小,目前只提供了 Left 和 Top 这组,并没有提供 Right 和 Bottom. <scri ...
- Golang 临时对象池 sync.Pool
Go 1.3 的sync包中加入一个新特性:Pool.官方文档可以看这里http://golang.org/pkg/sync/#Pool 这个类设计的目的是用来保存和复用临时对象,以减少内存分配,降低 ...
- 在任务管理器中显示所有CPU内核性能
在Windows7"任务管理器"的”性能“选项卡默认显示所有的CPU内核性能 在Windows10中可以通过设置来实现效果
- Jenkins + GitLab 通过 Webhook 自动触发构建爬坑记录
前言 在局域网搭建了一个Jenkins服务,用于自动构建和发布,在调通了构建程序之后,想使用内网的GitLab的Webhook功能触发代码推送事件,然后进行自动构建.后来发现在GitLab上做测试 ...
- 关于vmware workstation10常见问题
简单的说明:win7和win10的解决办法都是这个,都可以用这个解决. 这是一个共性的问题. 出现这个问题的原因是: a.要么是系统更新没有及时正确的关闭虚拟机导致的; b.没有及时将虚拟机手动关闭再 ...