Day

Outlook

Temperature

Humidity

Wind

PlayTennis

1

Sunny

Hot

High

Weak

No

2

Sunny

Hot

High

Strong

No

3

Overcast

Hot

High

Weak

Yes

4

Rain

Mild

High

Weak

Yes

5

Rain

Cool

Normal

Weak

Yes

6

Rain

Cool

Normal

Strong

No

7

Overcast

Cool

Normal

Strong

Yes

8

Sunny

Mild

High

Weak

No

9

Sunny

Cool

Normal

Weak

Yes

10

Rain

Mild

Normal

Weak

Yes

11

Sunny

Mild

Normal

Strong

Yes

12

Overcast

Mild

High

Strong

Yes

13

Overcast

Hot

Normal

Weak

Yes

14

Rain

Mild

High

Strong

No

对于上面例子,如何判断是否要去playtennis?

可以采用决策树的方式。

决策树是一种以实例为基础的归纳学习算法。从无序列/无规则的数据中,推导出树形表示的分类判决。

优点:计算量小、显示清晰

缺点:容易过拟合(需要修枝)(譬如,使用day做判决,一一对应虽然很准确,但是不能用在其他地方)、对时间顺序的数据,需要过多预处理工作

ID3算法:

1、对于实例,计算各个属性的信息增益

2、对于信息增益最大的属性P作为根节点,P的各个取值的样本作为子集进行分类

3、对于子集下,若只含有正例或反例,直接得到判决;否则递归调用算法,再次寻找子节点

熵:表示随机变量的不确定性。

条件熵:在一个条件下,随机变量的不确定性。

信息增益:熵 - 条件熵,在一个条件下,信息不确定性减少的程度。

用信息增益最大的属性作为结点,是因为最终去不去打球的不确定性,在获得该属性的结果后,不确定性大大降低。

也就是说,该属性对于打球的选择很重要。

对于解决上述问题,

首先,计算系统熵,PlayTennis

P(No) = 5/14

P(Yes) = 9/14

Entropy(S) = -(9/14)*log(9/14)-(5/14)*log(5/14) = 0.94

然后,计算各个属性的熵。

譬如:Wind

其中,Wind中取值为weak的记录有8条,其中,playtennis的正例6个,负例2个;取值为strong的记录有6条,正例为3个,负例为3个。

Entrogy(weak) = -(6/8)*log(6/8)-(2/8)*log(2/8) = 0.811

Entrogy(strong) = -(3/6)*log(3/6)-(3/6)*log(3/6) = 1.0

对应的信息增益为:

Gain(Wind) = Entropy(S) – (8/14)* Entrogy(weak)-(6/14)* Entrogy(strong) = 0.048

同理,Gain(Humidity = 0.151;Gain(Outlook = 0.247;Gain(Temperature = 0.029

此时,可以得到跟节点为:Outlook

对应点决策树:

Outlook分为三个集合:

Sunny:{1,2,8,9,11},正例:2、反例:3

Overcast:{3,7,12,13},正例:4、反例:0

Rain:{4,5,6,10,14},正例:3、反例:2

至此,可以得到:

Sunny:

Day

Outlook

Temperature

Humidity

Wind

PlayTennis

1

Sunny

Hot

High

Weak

No

2

Sunny

Hot

High

Strong

No

8

Sunny

Mild

High

Weak

No

9

Sunny

Cool

Normal

Weak

Yes

11

Sunny

Mild

Normal

Strong

Yes

Entropy(S) = -(3/5)*log(3/5)-(2/5)*log(2/5) = 0.971

对于Wind,weak时,正例为1,反例为2;Strong时,正例为1,反例为1.

Entrogy(weak) = -(1/3)*log(1/3)-(2/3)*log(2/3) = 0.918

Entrogy(strong) = -(1/2)*log(1/2)-(1/2)*log(1/2) = 1

Gain(Wind) = Entropy(S) – 3/5* Entrogy(weak)-2/5* Entrogy(strong) = 0.0202

同理,Gain(Humidity) = 0.971;Gain(Temperature) = 0.571

此时,可以画出部分决策树:

其中,python代码:

import math
#香农公式计算信息熵
def calcShannonEnt(dataset):
numEntries = len(dataset)
labelCounts = {}
for featVec in dataset:
currentLabel = featVec[-1]#最后一位表示分类
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] +=1 shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob*math.log(prob, 2)
return shannonEnt def CreateDataSet():
dataset = [['sunny', 'hot','high','weak', 'no' ],
['sunny', 'hot','high','strong', 'no' ],
['overcast', 'hot','high','weak', 'yes' ],
['rain', 'mild','high','weak', 'yes' ],
['rain', 'cool','normal','weak', 'yes' ],
['rain', 'cool','normal','strong', 'no' ],
['overcast', 'cool','normal','strong', 'yes' ],
['sunny', 'mild','high','weak', 'no' ],
['sunny', 'cool','normal','weak', 'yes' ],
['rain', 'mild','normal','weak', 'yes' ],
['sunny', 'mild','normal','strong', 'yes' ],
['overcast', 'mild','high','strong', 'yes' ],
['overcast', 'hot','normal','weak', 'yes' ],
['rain', 'mild','high','strong', 'no' ],
]
labels = ['outlook', 'temperature', 'humidity', 'wind']
return dataset, labels
#选取属性axis的值value的样本表
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec) return retDataSet
#选取信息增益最大的属性作为节点
def chooseBestFeatureToSplit(dataSet):
numberFeatures = len(dataSet[0])-1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numberFeatures):
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy =0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if(infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
#对于属性已经用完,仍然没有分类的情况,采用投票表决的方法
def majorityCnt(classList):
classCount ={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote]=0
classCount[vote] += 1
return max(classCount) def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
#类别相同停止划分
if classList.count(classList[0])==len(classList):
return classList[0]
#属性用完,投票表决
if len(dataSet[0])==1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree myDat,labels = CreateDataSet()
tree = createTree(myDat,labels)
print tree

  

在计算决策树的时候,sklearn库提供了决策树的计算方法(tree),但是,这个库提供的是:

scikit-learn uses an optimised version of the CART algorithm.

对于本文中使用的ID3算法是不支持的。

然而https://pypi.python.org/pypi/decision-tree-id3/0.1.2

该库支持ID3算法。

按照官网说明,注意安装时的依赖库的版本,该升级的升级,该安装的安装即可。‘

from id3 import Id3Estimator
from id3 import export_graphviz X = [['sunny', 'hot', 'high', 'weak'],
['sunny', 'hot', 'high', 'strong'],
['overcast', 'hot', 'high', 'weak'],
['rain', 'mild', 'high', 'weak'],
['rain', 'cool', 'normal', 'weak'],
['rain', 'cool', 'normal', 'strong'],
['overcast', 'cool', 'normal', 'strong'],
['sunny', 'mild', 'high', 'weak'],
['sunny', 'cool', 'normal', 'weak'],
['rain', 'mild', 'normal', 'weak'],
['sunny', 'mild', 'normal', 'strong'],
['overcast', 'mild', 'high', 'strong'],
['overcast', 'hot', 'normal', 'weak'],
['rain', 'mild', 'high', 'strong'],
]
Y = ['no','no','yes','yes','yes','no','yes','no','yes','yes','yes','yes','yes','no']
f = ['outlook','temperature','humidity','wind']
estimator = Id3Estimator()
estimator.fit(X, Y,check_input=True)
export_graphviz(estimator.tree_, 'tree.dot', f)

  然后通过GraphViz工具生成PDF

dot -Tpdf tree.dot -o tree.pdf

  结果:

当然,你也可以进行预测判断:

print estimator.predict([['rain',     'mild',  'high',   'strong']])

  

决策树算法(ID3)的更多相关文章

  1. 决策树算法——ID3

    决策树算法是一种有监督的分类学习算法.利用经验数据建立最优分类树,再用分类树预测未知数据. 例子:利用学生上课与作业状态预测考试成绩. 上述例子包含两个可以观测的属性:上课是否认真,作业是否认真,并以 ...

  2. 【面试考】【入门】决策树算法ID3,C4.5和CART

    关于决策树的purity的计算方法可以参考: 决策树purity/基尼系数/信息增益 Decision Trees 如果有不懂得可以私信我,我给你讲. ID3 用下面的例子来理解这个算法: 下图为我们 ...

  3. 数据挖掘 决策树算法 ID3 通俗演绎

    决策树是对数据进行分类,以此达到预測的目的.该决策树方法先依据训练集数据形成决策树,假设该树不能对全部对象给出正确的分类,那么选择一些例外添�到训练集数据中,反复该过程一直到形成正确的决策集.决策树代 ...

  4. ID3决策树算法原理及C++实现(其中代码转自别人的博客)

    分类是数据挖掘中十分重要的组成部分.分类作为一种无监督学习方式被广泛的使用. 之前关于"数据挖掘中十大经典算法"中,基于ID3核心思想的分类算法C4.5榜上有名.所以不难看出ID3 ...

  5. 决策树算法原理(ID3,C4.5)

    决策树算法原理(CART分类树) CART回归树 决策树的剪枝 决策树可以作为分类算法,也可以作为回归算法,同时特别适合集成学习比如随机森林. 1. 决策树ID3算法的信息论基础   1970年昆兰找 ...

  6. python机器学习笔记 ID3决策树算法实战

    前面学习了决策树的算法原理,这里继续对代码进行深入学习,并掌握ID3的算法实践过程. ID3算法是一种贪心算法,用来构造决策树,ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性 ...

  7. ID3和C4.5分类决策树算法 - 数据挖掘算法(7)

    (2017-05-18 银河统计) 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画 ...

  8. 机器学习-ID3决策树算法(附matlab/octave代码)

    ID3决策树算法是基于信息增益来构建的,信息增益可以由训练集的信息熵算得,这里举一个简单的例子 data=[心情好 天气好  出门 心情好 天气不好 出门 心情不好 天气好 出门 心情不好 天气不好 ...

  9. day-8 python自带库实现ID3决策树算法

    前一天,我们基于sklearn科学库实现了ID3的决策树程序,本文将基于python自带库实现ID3决策树算法. 一.代码涉及基本知识 1. 为了绘图方便,引入了一个第三方treePlotter模块进 ...

  10. 机器学习回顾篇(7):决策树算法(ID3、C4.5)

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

随机推荐

  1. SpringBoot与异步任务、定时任务、邮件任务

    异步任务 在需要开启异步的服务加上注解:@Async @Service public class AsyncService { //告诉SpringBoot这是一个异步任务,SpringBoot会自动 ...

  2. JS模块规范

    ES6标准发布后,module成为标准,标准的使用是以export指令导出接口,以import引入模块,但是在我们一贯的node模块中,我们采用的是CommonJS规范,使用require引入模块,使 ...

  3. 使用IntelliJ IDEA新建maven的javaWeb项目部署,启动访问index,jsp页面

    对于用惯了eclipse的人,idea其实还挺不一样的,也是摸索了很久,看了好多博客,这里就记录一下,以后肯定经常用!,不过使用熟练了,功能确实非常强大,真的牛! 1 新建maven项目,配置好目录结 ...

  4. vs2012 连接oracle11g 及数据的insert及select 的总结

    下载链接Oracle 11g所需的驱动ODTwithODAC1120320_32bit,下载链接为http://www.oracle.com/technetwork/topics/dotnet/uti ...

  5. 从一个局长使用BS系统的无奈看测试点

    今天我点名买了个B/S系统,听说只要有浏览器就能用.我最讨厌装客户端了,用浏览器就是方便啊. 下面就是我使用这个系统碰到的麻烦事: 我登录失败的时候没有任何提示,这没什么,反正提示也只是说失败…… 进 ...

  6. Awk基础

    Awk文本处理 awk是一种编程语言,用于在linux/unix下对文本和数据进行处理.awk数据可以来自标准输入.一个或多个文件,或其它命令的输出.awk通常是配合脚本进行使用, 是一个强大的文本处 ...

  7. 01 Getting Started 开始

    Getting Started 开始 Install the Go tools Test your installation Uninstalling Go Getting help   Downlo ...

  8. python网络编程--线程Semaphore(信号量)

    一:Semaphore(信号量) 互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才 ...

  9. vue+vuex+axios+echarts画一个动态更新的中国地图

    一. 生成项目及安装插件 # 安装vue-cli npm install vue-cli -g # 初始化项目 vue init webpack china-map # 切到目录下 cd china- ...

  10. 洛谷P3366最小生成树

    传送门啦 #include <iostream> #include <cstdio> #include <cstring> #include <algorit ...