E. Present for Vitalik the Philatelist
time limit per test

5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Vitalik the philatelist has a birthday today!

As he is a regular customer in a stamp store called 'Robin Bobin', the store management decided to make him a gift.

Vitalik wants to buy one stamp and the store will give him a non-empty set of the remaining stamps, such that the greatest common divisor (GCD) of the price of the stamps they give to him is more than one. If the GCD of prices of the purchased stamp and prices of present stamps set will be equal to 1, then Vitalik will leave the store completely happy.

The store management asks you to count the number of different situations in which Vitalik will leave the store completely happy. Since the required number of situations can be very large, you need to find the remainder of this number modulo 109 + 7. The situations are different if the stamps purchased by Vitalik are different, or if one of the present sets contains a stamp that the other present does not contain.

Input

The first line of the input contains integer n (2 ≤ n ≤ 5·105) — the number of distinct stamps, available for sale in the 'Robin Bobin' store.

The second line contains a sequence of integers a1, a2, ..., an (2 ≤ ai ≤ 107), where ai is the price of the i-th stamp.

Output

Print a single integer — the remainder of the sought number of situations modulo 109 + 7.

Examples
input
3
2 3 2
output
5
input
2
9 6
output
0
Note

In the first sample the following situations are possible:

  • Vitalik buys the 1-st stamp, the store gives him the 2-nd stamp as a present;
  • Vitalik buys the 3-rd stamp, the store gives him the 2-nd stamp as a present;
  • Vitalik buys the 2-nd stamp, the store gives him the 1-st stamp as a present;
  • Vitalik buys the 2-nd stamp, the store gives him the 3-rd stamp as a present;
  • Vitalik buys the 2-nd stamp, the store gives him the 1-st and 3-rd stamps as a present.

【题意】

  给出一列数,对于每一个数,求选出一个不包含当前数的非空子集满足子集与当前数gcd为1,并且子集中的所有数的gcd不为1的方案数,统计总和。

【分析】

  就是说s是一个子集,x是一个数,然后求$\sum gcd(s,x)==1且gcd(s)!=1$

    设d=gcd(s),枚举这个d,那就是(2^[d的倍数的个数]-1)*(不是含d因子的数)

  但是这样会重复,比如2,3,6在2,3,6时都算了一遍。所以容斥。【你会发现容斥系数是莫比乌斯函数的相反数

  【然后mu[i]=0就没有必要算了。时间极限是mlogm,但是mu=0没算,应该会快一点把【反正过了

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 500010
#define Maxm 10001000
#define Mod 1000000007 int mu[Maxm],pri[Maxm],pl,mx;
int cnt[Maxm],pw[Maxn],a[Maxn];
bool vis[Maxm];
void init()
{
memset(vis,,sizeof(vis));
for(int i=;i<=mx;i++)
{
if(!vis[i]) pri[++pl]=i,mu[i]=-;
for(int j=;j<=pl;j++)
{
if(pri[j]*i>mx) break;
vis[pri[j]*i]=;
if(i%pri[j]==) mu[i*pri[j]]=;
else mu[i*pri[j]]=-mu[i];
if(i%pri[j]==) break;
}
}
} int main()
{
int n;
scanf("%d",&n);mx=;
memset(cnt,,sizeof(cnt));
for(int i=;i<=n;i++) {scanf("%d",&a[i]);mx=max(mx,a[i]);cnt[a[i]]++;}
init();
pw[]=;for(int i=;i<=n;i++) pw[i]=(pw[i-]*)%Mod;
int ans=;
for(int i=;i<=mx;i++) if(mu[i]!=)
{
int nw=;
for(int j=i;j<=mx;j+=i) nw+=cnt[j];
ans=(ans+1LL*(pw[nw]-)*(-mu[i])*(n-nw)%Mod)%Mod;
}
ans=(ans+Mod)%Mod;
printf("%d\n",ans);
return ;
}

2017-04-20 19:16:41

【CF 585E】 E. Present for Vitalik the Philatelist的更多相关文章

  1. 【CodeForces】585 E. Present for Vitalik the Philatelist

    [题目]E. Present for Vitalik the Philatelist [题意]给定n个数字,定义一种合法方案为选择一个数字Aa,选择另外一些数字Abi,令g=gcd(Ab1...Abx ...

  2. CF 585 E Present for Vitalik the Philatelist

    CF 585 E Present for Vitalik the Philatelist 我们假设 $ f(x) $ 表示与 $ x $ 互质的数的个数,$ s(x) $ 为 gcd 为 $ x $ ...

  3. CF585E. Present for Vitalik the Philatelist [容斥原理 !]

    CF585E. Present for Vitalik the Philatelist 题意:\(n \le 5*10^5\) 数列 \(2 \le a_i \le 10^7\),对于每个数\(a\) ...

  4. 「CF585E」 Present for Vitalik the Philatelist

    「CF585E」 Present for Vitalik the Philatelist 传送门 我们可以考虑枚举 \(S'=S\cup\{x\}\),那么显然有 \(\gcd\{S'\}=1\). ...

  5. 【CF#338D】GCD Table

    [题目描述] 有一张N,M<=10^12的表格,i行j列的元素是gcd(i,j) 读入一个长度不超过10^4,元素不超过10^12的序列a[1..k],问是否在某一行中出现过 [题解] 要保证g ...

  6. 【CF#303D】Rotatable Number

    [题目描述] Bike是一位机智的少年,非常喜欢数学.他受到142857的启发,发明了一种叫做“循环数”的数. 如你所见,142857是一个神奇的数字,因为它的所有循环排列能由它乘以1,2,...,6 ...

  7. 【35.20%】【CF 706D】Vasiliy's Multiset

    time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standa ...

  8. 【CF 463F】Escape Through Leaf

    题意 给你一棵 \(n\) 个点的树,每个节点有两个权值 \(a_i,b_i\). 从一个点 \(u\) 可以跳到以其为根的子树内的任意一点 \(v\)(不能跳到 \(u\) 自己),代价是 \(a_ ...

  9. 【CF 453A】 A. Little Pony and Expected Maximum(期望、快速幂)

    A. Little Pony and Expected Maximum time limit per test 1 second memory limit per test 256 megabytes ...

随机推荐

  1. VUE组件相关总结!

    定义使用一个组件 <!doctype html> <html lang="en"> <head> <meta charset=" ...

  2. Tslib移植与分析【转】

    转自:http://blog.csdn.net/water_cow/article/details/7215308 目标平台:LOONGSON-1B开发板(mips32指令集)编译平台:x86PC-- ...

  3. 一步一步搭建11gR2 rac+dg之配置单实例的DG(八)【转】

    RAC主库配置单实例ActiveDataguard 本文文档结构: 这里配置的过程中需要注意的一项是多看看rac1和rac2以及dg的告警日志会对配置过程有更深刻的理解...配置oracle rac的 ...

  4. ifdef等宏的妙用

    条件编译 一般情况下,源程序中所有的行都参加编译.但是有时希望对其中一部分内容只在满足一定条件才进行编译,也就是对一部分内容指定编译的条件,这就是"条件编译". 条件编译命令最常见 ...

  5. jQuery使用JSONP时的错误处理

    概述 什么是域,简单来说就是协议+域名或地址+端口,3者只要有任何一个不同就表示不在同一个域.跨域,就是在一个域中访问另一个域的数据. 如果只是加载另一个域的内容,而不需要访问其中的数据的话,跨域是很 ...

  6. c语言双向循环链表

    双向循环链表,先来说说双向链表,双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱.所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继 ...

  7. mac上Homebrew安装以及python安装

    Homebrew homebrew是一款Mac OS平台下的软件包管理工具,拥有安装.卸载.更新.查看.搜索等很多实用的功能. Homebrew常用命令 查看brew的帮助:brew –help 安装 ...

  8. js交互

    Js和native交互的方法与问题 实现JS和Native交互有两种方式: 第一种:shouldOverrideUrlLoading(WebView view, String url) 通过给WebV ...

  9. fedora常见问题和解决方案

    fedora作为linux主流发行版之一,大部分功能还是很赞的.只是在美观性和其他一些细节上还是需要手工调整才有更加体验. 以下解决方案,使用fedora20+gnome3环境 eclipse界面难看 ...

  10. GUC-10 线程八锁

    /* * 题目:判断打印的 "one" or "two" ? * * 1. 两个普通同步方法,两个线程,标准打印, 打印? //one two * 2. 新增 ...