【CF 585E】 E. Present for Vitalik the Philatelist
E. Present for Vitalik the Philatelisttime limit per test5 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Vitalik the philatelist has a birthday today!
As he is a regular customer in a stamp store called 'Robin Bobin', the store management decided to make him a gift.
Vitalik wants to buy one stamp and the store will give him a non-empty set of the remaining stamps, such that the greatest common divisor (GCD) of the price of the stamps they give to him is more than one. If the GCD of prices of the purchased stamp and prices of present stamps set will be equal to 1, then Vitalik will leave the store completely happy.
The store management asks you to count the number of different situations in which Vitalik will leave the store completely happy. Since the required number of situations can be very large, you need to find the remainder of this number modulo 109 + 7. The situations are different if the stamps purchased by Vitalik are different, or if one of the present sets contains a stamp that the other present does not contain.
InputThe first line of the input contains integer n (2 ≤ n ≤ 5·105) — the number of distinct stamps, available for sale in the 'Robin Bobin' store.
The second line contains a sequence of integers a1, a2, ..., an (2 ≤ ai ≤ 107), where ai is the price of the i-th stamp.
OutputPrint a single integer — the remainder of the sought number of situations modulo 109 + 7.
Examplesinput3
2 3 2output5input2
9 6output0NoteIn the first sample the following situations are possible:
- Vitalik buys the 1-st stamp, the store gives him the 2-nd stamp as a present;
- Vitalik buys the 3-rd stamp, the store gives him the 2-nd stamp as a present;
- Vitalik buys the 2-nd stamp, the store gives him the 1-st stamp as a present;
- Vitalik buys the 2-nd stamp, the store gives him the 3-rd stamp as a present;
- Vitalik buys the 2-nd stamp, the store gives him the 1-st and 3-rd stamps as a present.
【题意】
给出一列数,对于每一个数,求选出一个不包含当前数的非空子集满足子集与当前数gcd为1,并且子集中的所有数的gcd不为1的方案数,统计总和。
【分析】
就是说s是一个子集,x是一个数,然后求$\sum gcd(s,x)==1且gcd(s)!=1$
设d=gcd(s),枚举这个d,那就是(2^[d的倍数的个数]-1)*(不是含d因子的数)
但是这样会重复,比如2,3,6在2,3,6时都算了一遍。所以容斥。【你会发现容斥系数是莫比乌斯函数的相反数
【然后mu[i]=0就没有必要算了。时间极限是mlogm,但是mu=0没算,应该会快一点把【反正过了
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 500010
#define Maxm 10001000
#define Mod 1000000007 int mu[Maxm],pri[Maxm],pl,mx;
int cnt[Maxm],pw[Maxn],a[Maxn];
bool vis[Maxm];
void init()
{
memset(vis,,sizeof(vis));
for(int i=;i<=mx;i++)
{
if(!vis[i]) pri[++pl]=i,mu[i]=-;
for(int j=;j<=pl;j++)
{
if(pri[j]*i>mx) break;
vis[pri[j]*i]=;
if(i%pri[j]==) mu[i*pri[j]]=;
else mu[i*pri[j]]=-mu[i];
if(i%pri[j]==) break;
}
}
} int main()
{
int n;
scanf("%d",&n);mx=;
memset(cnt,,sizeof(cnt));
for(int i=;i<=n;i++) {scanf("%d",&a[i]);mx=max(mx,a[i]);cnt[a[i]]++;}
init();
pw[]=;for(int i=;i<=n;i++) pw[i]=(pw[i-]*)%Mod;
int ans=;
for(int i=;i<=mx;i++) if(mu[i]!=)
{
int nw=;
for(int j=i;j<=mx;j+=i) nw+=cnt[j];
ans=(ans+1LL*(pw[nw]-)*(-mu[i])*(n-nw)%Mod)%Mod;
}
ans=(ans+Mod)%Mod;
printf("%d\n",ans);
return ;
}
2017-04-20 19:16:41
【CF 585E】 E. Present for Vitalik the Philatelist的更多相关文章
- 【CodeForces】585 E. Present for Vitalik the Philatelist
[题目]E. Present for Vitalik the Philatelist [题意]给定n个数字,定义一种合法方案为选择一个数字Aa,选择另外一些数字Abi,令g=gcd(Ab1...Abx ...
- CF 585 E Present for Vitalik the Philatelist
CF 585 E Present for Vitalik the Philatelist 我们假设 $ f(x) $ 表示与 $ x $ 互质的数的个数,$ s(x) $ 为 gcd 为 $ x $ ...
- CF585E. Present for Vitalik the Philatelist [容斥原理 !]
CF585E. Present for Vitalik the Philatelist 题意:\(n \le 5*10^5\) 数列 \(2 \le a_i \le 10^7\),对于每个数\(a\) ...
- 「CF585E」 Present for Vitalik the Philatelist
「CF585E」 Present for Vitalik the Philatelist 传送门 我们可以考虑枚举 \(S'=S\cup\{x\}\),那么显然有 \(\gcd\{S'\}=1\). ...
- 【CF#338D】GCD Table
[题目描述] 有一张N,M<=10^12的表格,i行j列的元素是gcd(i,j) 读入一个长度不超过10^4,元素不超过10^12的序列a[1..k],问是否在某一行中出现过 [题解] 要保证g ...
- 【CF#303D】Rotatable Number
[题目描述] Bike是一位机智的少年,非常喜欢数学.他受到142857的启发,发明了一种叫做“循环数”的数. 如你所见,142857是一个神奇的数字,因为它的所有循环排列能由它乘以1,2,...,6 ...
- 【35.20%】【CF 706D】Vasiliy's Multiset
time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standa ...
- 【CF 463F】Escape Through Leaf
题意 给你一棵 \(n\) 个点的树,每个节点有两个权值 \(a_i,b_i\). 从一个点 \(u\) 可以跳到以其为根的子树内的任意一点 \(v\)(不能跳到 \(u\) 自己),代价是 \(a_ ...
- 【CF 453A】 A. Little Pony and Expected Maximum(期望、快速幂)
A. Little Pony and Expected Maximum time limit per test 1 second memory limit per test 256 megabytes ...
随机推荐
- shell if判断中常用的a-z表达式含义
shell if判断中常用的a-z表达式含义 可通过在在linux中man test命令查看下列参数的详细用法 [ -a FILE ] 如果 FILE 存在则为真. [ -b FILE ] 如果 ...
- C++ Primer 5th 第17章 标准库特殊设施
C++新标准库提供了很多新功能,它们更加强大和易用. tuple类型 tuple是一种类似pair的模板,pair可以用来保存一对逻辑上有关联的元素对.但与pair不同的是,pair只能存储两个成员, ...
- 【codeforces】【比赛题解】#872 CF Round #440 (Div.2)
链接. [A]寻找漂亮数字 题意: 给定了两列非零数字.我们说一个数是漂亮的,当它的十进制表达中有至少一个数从数列一中取出,至少有一个数从数列二中取出.最小的漂亮数字是多少? 输入: 第一行两个数\( ...
- 84.VMware Tools安装——设置共享文件
一.安装VMware Tools 1.如图所示,点击安装 2.出现如下界面,将VMwareTools-9.6.2-1688356.tar.gz安装包复制到主文件夹下 3.输入命令tar -zxvf V ...
- sqlite3 的insert记录项思路
sqlite3 的insert记录项思路 1.组合一个insert的sql语句 2.判断是否需要立即执行,若不是立刻执行的语句,则插入到待处理的链表中,供后续事务处理时提交.必须有一个专门线程来对事务 ...
- 如何用Percona XtraBackup进行MySQL从库的单表备份和恢复【转】
前提 应该确定采用的是单表一个表空间,否则不支持单表的备份与恢复. 在配置文件里边的mysqld段加上 innodb_file_per_table = 1 环境说明: 主库:192.168.0.1 从 ...
- Java关于网络编程回顾
一.Java网络编程三要素:1.IP地址:是要确定发送的地址,IP地址一般分为5类. 2.端口:要确定发送的程序是哪一个,端口的范围是0--65535,其中0-1024是系统使用或保留端口 3.协议: ...
- 数据库-mysql中文显示问题
一:在mysql 下面查看带中文的记录显示乱码 mysql> select * from role; +----+------+ | id | name | +----+------+ | 1 ...
- 深度学习在美团点评推荐平台排序中的应用&& wide&&deep推荐系统模型--学习笔记
写在前面:据说下周就要xxxxxxxx, 吓得本宝宝赶紧找些广告的东西看看 gbdt+lr的模型之前是知道怎么搞的,dnn+lr的模型也是知道的,但是都没有试验过 深度学习在美团点评推荐平台排序中的运 ...
- git忽略特殊文件或文件夹
1.在项目目录中添加“.gitignore”文件,项目目录就是你存放git工程的目录就是有“.git”目录的目录 vi .gitignore 2.在文件中添加如下内容,其中“/runtime/”是忽略 ...