Codeforces 题目传送门 & 洛谷题目传送门

一道很神的乱搞题 %%%

首先注意到如果直接去做,横纵坐标有关联,不好搞。这里有一个非常套路的技巧——坐标轴旋转,我们不妨将整个坐标系旋转 \(\dfrac{\pi}{4}\),即对于原来坐标系中的一个点 \(x,y\),映射到新坐标系上的坐标为 \((x+y,y-x)\),经过这样的转化,原来坐标系中的上 \((0,1)\) 下 \((0,-1)\) 左 \((-1,0)\) 右 \((1,0)\) 就变为了 \((1,1),(-1,-1),(-1,1),(1,-1)\),我们发现每一个向量的横/纵坐标都是 \(\pm 1\),也就可以横纵坐标分开来考虑了。

但这样值域是 \(\{1,-1\}\),还是不太方便,我们考虑再将其变为 \(\{1,0\}\),也就是说我们给 \(t\) 时刻所有点的横纵坐标都加上 \(t\) 再除以二,即每一个对三元组 \((t,x,y)\) 就变为了 \((t,\dfrac{x+y+t}{2},\dfrac{y-x+t}{2})\),有人可能会担心这里有小数,事实上,若 \(x+y\) 与 \(t\) 奇偶性不同,那显然是不合法的,因此 \(\dfrac{x+y+t}{2},\dfrac{y-x+t}{2}\) 都是整数,这样一来上下左右又变为了 \((1,1),(0,0),(0,1),(1,0)\)。

将横纵坐标分开来考虑,这样就变为了求解两次如下的问题:有一个呈周期分别的序列 \(a\) 满足 \(a_i=a_{i-n}(i\ge n),a_i\in\{0,1\}\),给定 \(m\) 个二元组 \((t_i,x_i)\) 表示 \(\sum\limits_{j=1}^{t_i}a_j=x_i\),问是否存在这样的序列 \(a\)。

我们考虑记 \(s_i=\sum\limits_{j=1}^ia_j\),由于 \(a_i\) 呈周期分布,必然对于 \(p>n\),有 \(s_p=\lfloor\dfrac{p}{n}\rfloor s_n+s_{p\bmod n}\),我们记 \(p_i=\lfloor\dfrac{t_i}{n}\rfloor,q_i=t_i\bmod n\),那么每个二元组等价于 \(p_is_n+s_{q_i}=x_i\)。

我们将所有二元组按 \(q_i\) 从小到大排序,方便起见我们再引入两条新的信息 \(p_{n+1}=0,q_{n+1}=0,x_{n+1}=0\) 以及 \(p_{n+2}=-1,q_{n+2}=n,x_{n+2}=0\)。

考虑对于两条信息 \((p_i,q_i,x_i)\) 以及 \((p_{i+1},q_{i+1},x_{i+1})\),我们有 \(p_is_n+s_{q_i}=x_i\) 及 \(p_{i+1}s_n+s_{q_{i+1}}=x_{i+1}\),拿后一个等式减去前一个等式可得 \((p_{i+1}-p_i)s_n+s_{q_{i+1}}-s_{q_i}=x_{i+1}-x_i\),而 \(s_{q_{i+1}}-s_{q_i}=\sum\limits_{j=q_i+1}^{q_{i+1}}a_j\in[0,q_{i+1}-q_i]\),故 \((p_{i+1}-p_i)s_n+s_{q_{i+1}}-s_{q_i}\in[(p_{i+1}-p_i)s_n,(p_{i+1}-p_i)s_n+q_{i+1}-q_i]\),因此 \((p_{i+1}-p_i)s_n\in[(x_{i+1}-x_i)-(q_{i+1}-q_i),x_{i+1}-x_i]\),分三种情况,可得出 \(s_n\) 的范围:

  • \(p_{i+1}-p_i=0\),那么若 \(0\notin[(x_{i+1}-x_i)-(q_{i+1}-q_i),x_{i+1}-x_i]\) 则直接输出 NO,否则可直接忽略该条件。
  • \(p_{i+1}-p_i>0\),那么 \(s_n\in[\lceil\dfrac{(x_{i+1}-x_i)-(q_{i+1}-q_i)}{p_{i+1}-p_i}\rceil,\lfloor\dfrac{x_{i+1}-x_i}{p_{i+1}-p_i}\rfloor]\)
  • \(p_{i+1}-p_i<0\),那么 \(s_n\in[\lceil\dfrac{x_{i}-x_{i+1}}{p_{i}-p_{i+1}}\rceil,\lfloor\dfrac{(x_{i}-x_{i+1})-(q_{i}-q_{i+1})}{p_{i}-p_{i+1}}\rfloor]\)

维护两个变量 \(L,R\) 表示 \(s_n\in[L,R]\),一边扫描一边更新即可,如果最终 \(L>R\) 则输出 NO,否则不妨设 \(s_n=L\) 并可得到若干个形如 \(s_{q_{i+1}}-s_{q_i}=r_i\) 的式子,显然根据之前的限制有 \(r_i\le s_{q_{i+1}}-s_{q_i}\),我们就令 \(a_{q_{i}+1},a_{q_i+2},\cdots,a_{q_i+r_i}\) 为 \(1\),\(a_{q_i+r_i+1},a_{q_i+r_i+2},\cdots,a_{q_{i+1}}\) 为 \(0\) 即可。

复杂度 \(n\log n\)。

const int MAXN=2e5;
const ll INF=0x3f3f3f3f3f3f3f3fll;
int n,l;
struct data{
ll t,x,y,p,q;
bool operator <(const data &rhs){
return q<rhs.q;
}
} a[MAXN+5];
int main(){
scanf("%d%d",&n,&l);
for(int i=1;i<=n;i++){
scanf("%lld%lld%lld",&a[i].t,&a[i].x,&a[i].y);
if((a[i].t+a[i].x+a[i].y)&1ll) return puts("NO"),0;
a[i].p=a[i].t/l;a[i].q=a[i].t%l;
ll tmpx=a[i].x,tmpy=a[i].y;
a[i].x=(tmpx+tmpy+a[i].t)>>1;
a[i].y=(tmpy-tmpx+a[i].t)>>1;
} a[++n].p=-1;a[n].q=l;sort(a+1,a+n+1);
ll xd=0,xu=INF,yd=0,yu=INF;
for(int i=1;i<=n;i++){
ll difp=a[i].p-a[i-1].p,difq=a[i].q-a[i-1].q;
if(difp==0){
if(a[i].x-a[i-1].x<0||a[i].x-a[i-1].x-difq>0) return puts("NO"),0;
if(a[i].y-a[i-1].y<0||a[i].y-a[i-1].y-difq>0) return puts("NO"),0;
} else if(difp>0){
chkmax(xd,(ll)ceil(1.0l*(a[i].x-a[i-1].x-difq)/difp));
chkmin(xu,(ll)floor(1.0l*(a[i].x-a[i-1].x)/difp));
chkmax(yd,(ll)ceil(1.0l*(a[i].y-a[i-1].y-difq)/difp));
chkmin(yu,(ll)floor(1.0l*(a[i].y-a[i-1].y)/difp));
} else{
difp=-difp;
chkmax(xd,(ll)ceil(1.0l*(a[i-1].x-a[i].x)/difp));
chkmin(xu,(ll)floor(1.0l*(a[i-1].x-a[i].x+difq)/difp));
chkmax(yd,(ll)ceil(1.0l*(a[i-1].y-a[i].y)/difp));
chkmin(yu,(ll)floor(1.0l*(a[i-1].y-a[i].y+difq)/difp));
}
} if(xd>xu||yd>yu) return puts("NO"),0;
ll vx=xd,vy=yd;
for(int i=1;i<=n;i++){
ll stpx=(a[i].x-a[i].p*vx)-(a[i-1].x-a[i-1].p*vx);
ll stpy=(a[i].y-a[i].p*vy)-(a[i-1].y-a[i-1].p*vy);
int curx=0,cury=0,stp=a[i].q-a[i-1].q;
while(stp--){
if(curx<stpx){
++curx;
if(cury<stpy) ++cury,putchar('U');
else putchar('R');
} else {
if(cury<stpy) ++cury,putchar('L');
else putchar('D');
}
}
} putchar('\n');
return 0;
}

Codeforces 538G - Berserk Robot(乱搞)的更多相关文章

  1. Codeforces 732e [贪心][stl乱搞]

    /* 不要低头,不要放弃,不要气馁,不要慌张 题意: 给n个插座,m个电脑.每个插座都有一个电压,每个电脑都有需求电压. 每个插座可以接若干变压器,每个变压器可以使得电压变为x/2上取整. 有无限个变 ...

  2. Codeforces 1077E (二分乱搞或者dp)

    题意:给你一个数组,可以从中选区若干种元素,但每种元素选区的个数前一种必须是后一种的2倍,选区的任意2种元素不能相同,问可以选取最多的元素个数是多少? 思路1(乱搞):记录一下每种元素的个数,然后暴力 ...

  3. codeforces 664B B. Rebus(乱搞题)

    题目链接: B. Rebus time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  4. Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2)(A.暴力,B.优先队列,C.dp乱搞)

    A. Carrot Cakes time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...

  5. Codeforces 1182D Complete Mirror 树的重心乱搞 / 树的直径 / 拓扑排序

    题意:给你一颗树,问这颗树是否存在一个根,使得对于任意两点,如果它们到根的距离相同,那么它们的度必须相等. 思路1:树的重心乱搞 根据样例发现,树的重心可能是答案,所以我们可以先判断一下树的重心可不可 ...

  6. Codeforces 306D - Polygon(随机化+乱搞)

    Codeforces 题目传送门 & 洛谷题目传送门 中考终于结束了--简单写道题恢复下状态罢. 首先这一类题目肯定没法用一般的方法解决,因此考虑用一些奇淫的乱搞做法解决这道题,不难发现,如果 ...

  7. codeforces 653C C. Bear and Up-Down(乱搞题)

    题目链接: C. Bear and Up-Down time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  8. codeforces 665C C. Simple Strings(乱搞)

    题目链接: C. Simple Strings time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. CodeForces - 1228D (暴力+思维+乱搞)

    题意 https://vjudge.net/problem/CodeForces-1228D 有一个n个顶点m条边的无向图,在一对顶点中最多有一条边. 设v1,v2是两个不相交的非空子集,当满足以下条 ...

随机推荐

  1. SyntaxError: Non-UTF-8 code starting with '\xbb' in file D:\流畅学python\ex32.py on line 1, but no encoding declared; see http://python.org/dev/peps/pep-0263/ for details

    1. 报错如下: SyntaxError: Non-UTF-8 code starting with '\xd3' in file D:\流畅学python\ex34.py on line 4, bu ...

  2. MySQL复习(一)MySQL架构

    MySQL架构 MySQL采用的是C/S架构,我们在使用MySQL的时候,都是以客户端的身份,发送请求连接到运行服务端的MySQL守护进程,而MySQL服务器端则根据我们的请求进行处理并把处理后的结果 ...

  3. Java:LinkedList类小记

    Java:LinkedList类小记 对 Java 中的 LinkedList类,做一个微不足道的小小小小记 概述 java.util.LinkedList 集合数据存储的结构是循环双向链表结构.方便 ...

  4. 零基础入门stm32基本定时器详解

    一.基本定时器介绍 在STM32中,基本定时器有TIM6.TIM7等.基本定时器主要包含时基单元,提供16位的计数,能计数0~65535.基本定时器除了计数功能以外,还能输出给DAC模块一个TRGO信 ...

  5. Exynos4412 中断处理流程详解

    Linux 中,当外设触发中断后,大体处理流程如下: a -- 具体CPU architecture相关的模块会进行现场保护,然后调用machine driver对应的中断处理handler; b - ...

  6. NOIP模拟85(多校18)

    前言 好像每个题目背景所描述的人都是某部番里的角色,热切好像都挺惨的(情感上的惨). 然后我只知道 T1 的莓,确实挺惨... T1 莓良心 解题思路 首先答案只与 \(w\) 的和有关系,于是问题就 ...

  7. Vue:Vue的介绍以及组件剖析

    介绍 现在,随着基于JavaScript的单页应用程序(SPA)和服务器端渲染(SSR)的兴起,可以用JavaScript编写整个前端应用程序,并整洁地管理和维护该应用程序的前端代码.诸如Angula ...

  8. minimum-depth-of-binary-tree leetcode C++

    Given a binary tree, find its minimum depth.The minimum depth is the number of nodes along the short ...

  9. Bzoj P2054 疯狂的馒头 | 并查集

    题目链接 思路:因为每次染色都会将某些馒头的颜色彻底更改,所以每个馒头的最终的颜色其实是由最后一次染色决定的,那么我们只考虑最后一次染色即可.对此,我们可以从后往前倒着染色,当目前的染色区间中存在白色 ...

  10. 第10课 OpenGL 3D世界

    加载3D世界,并在其中漫游: 在这一课中,你将学会如何加载3D世界,并在3D世界中漫游.这一课使用第一课的代码,当然在课程说明中我只介绍改变了代码. 这一课是由Lionel Brits (βtelge ...