CF833B-线段树优化DP

题意

将一个长为\(n\)的序列分成\(k\)段,每段贡献为其中不同数字的个数,求最大贡献和。

思路

此处感谢@gxy001 聚铑的精彩讲解

先考虑暴力DP,可以想到一个时空复杂度\(O(n^2k)\)的方法,即记录前i个数字分成了j段。我们现在来思考几个问题来优化这个操作:

  1. 对于一个数字,它对那些地方实际有贡献?
  2. 每次分割出一个区间段对后续操作有影响的位置在哪?
  3. 每次转移都从哪些地方继承?

下来一一解答这些问题。

  1. 对于一个数字,它能产生贡献的区间其实就是该数字上一次出现的位置的后一位到它本身的位置。
  2. 对于每次划分,它以前的位置的贡献已经被考虑,所以我们只能考虑后面的位置。
  3. 相应的,每次转移会继承前面所有DP值的最大值

那么我们可以将k提出来,每次循环继承上一次所有的dp值。因为只考虑从前面转移dp值,所以不会对之前的决策产生影响,所以是正确的。

看看1、3问题的答案,是不是想到了RMQ和区间赋值?

于是我们可以通过线段树来实现DP优化。

具体来讲,迭代k次,每次线段树更新为上一次序列的dp值,然后从前往后扫,每个数会对其上述区间产生1的贡献,转移继承前面所有dp值的最大值即可。

时间复杂度将一维优化为log。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<cmath>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=35005;
int n,k,cur[maxn],pre[maxn],f[maxn][60];
struct SegmentTree{
#define ls (ro<<1)
#define rs (ro<<1|1)
struct tree{
int l,r,tag,v;
}e[maxn<<2];
inline void pushup(int ro){
e[ro].v=max(e[ls].v,e[rs].v);
}
inline void pushdown(int ro){
e[ls].tag+=e[ro].tag;e[rs].tag+=e[ro].tag;
e[ls].v+=e[ro].tag;e[rs].v+=e[ro].tag;
e[ro].tag=0;
}
void build(int ro,int l,int r){
e[ro].l=l,e[ro].r=r;
if(l==r)return;
int mid=l+r>>1;
build(ls,l,mid);
build(rs,mid+1,r);
}
void rebuild(int tim,int ro){
int l=e[ro].l,r=e[ro].r;
e[ro].tag=0;
if(l==r){
e[ro].v=f[l][tim];return;
}
rebuild(tim,ls);rebuild(tim,rs);
pushup(ro);
}
void update(int ro,int x,int y){
int l=e[ro].l,r=e[ro].r;
if(l>=x and r<=y){
e[ro].v+=1;
e[ro].tag+=1;return;
}
pushdown(ro);
int mid=l+r>>1;
if(mid>=x)update(ls,x,y);
if(mid<y)update(rs,x,y);
pushup(ro);
}
int query(int ro,int x,int y){
int l=e[ro].l,r=e[ro].r;
if(l==x and r==y)return e[ro].v;
pushdown(ro);
int mid=l+r>>1;
if(mid<x)return query(rs,x,y);
else if(mid>=y)return query(ls,x,y);
else return max(query(ls,x,mid),query(rs,mid+1,y));
}
#undef ls
#undef rs
}T;
inline void work(){
n=read(),k=read();
for(int x,i=1;i<=n;i++)x=read(),pre[i]=cur[x],cur[x]=i;
T.build(1,0,n);
for(int i=1;i<=k;i++){
T.rebuild(i-1,1);
for(int x=1;x<=n;x++) T.update(1,pre[x],x-1),f[x][i]=T.query(1,0,x-1);
}
printf("%d",f[n][k]);
}
}
signed main(){
star::work();
return 0;
}

CF833B-线段树优化DP的更多相关文章

  1. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  2. BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】

    BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...

  3. [AGC011F] Train Service Planning [线段树优化dp+思维]

    思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...

  4. 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp

    题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...

  5. POJ 2376 Cleaning Shifts (线段树优化DP)

    题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...

  6. 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$

    正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...

  7. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  8. 4.11 省选模拟赛 序列 二分 线段树优化dp set优化dp 缩点

    容易想到二分. 看到第一个条件容易想到缩点. 第二个条件自然是分段 然后让总和最小 容易想到dp. 缩点为先:我是采用了取了一个前缀最小值数组 二分+并查集缩点 当然也是可以直接采用 其他的奇奇怪怪的 ...

  9. Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...

  10. 2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP)

    2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP) https://www.luogu.com.cn/problem/P1848 题意: 当农夫约翰闲 ...

随机推荐

  1. 「题解」NWRRC2017 Joker

    本文将同步发布于: 洛谷博客: csdn: 博客园: 简书. 题目 题目链接:洛谷 P7028.gym101612J. 题意概述 有一个长度为 \(n\) 的数列,第 \(i\) 个元素的值为 \(a ...

  2. UF_DRAW 制图操作

    Open C uc6476uc6477uc6478uc6479uc6480uc6481uc6482uc6483uc6484uc6485uc6486uc6488uc6489uc6492uc6494uc6 ...

  3. 【NX二次开发】导出x_t、导入x_t例子,UF_PS_export_data、UF_PS_import_data

    获取blockUI 体收集器选择的体,导出x_t: std::vector<TaggedObject*>objects = bodySelect0->GetSelectedObjec ...

  4. Linkerd 2.10(Step by Step)—多集群通信

    Linkerd 2.10 系列 快速上手 Linkerd v2.10 Service Mesh(服务网格) 腾讯云 K8S 集群实战 Service Mesh-Linkerd2 & Traef ...

  5. 性能分析之用户数(线程数)/响应时间/TPS的关系

    最近在写一些东西的时候,把一些内容整理了一下. 在考虑压力工具中的用户数(有些工具中称为线程数,本文后续都用"用户数"来说明).响应时间.TPS三者之间的关系时,想到之前也有人问起 ...

  6. element的日期选择使用value-format之后表单验证报错

    在表单验证的时候报错 添加一个日期控件,但是发现在表单验证中遇到了冲突如下: Error in event handler for "el.form.change": " ...

  7. 使用Let’s Encrypt实现网站https化

    使用 Let's Encrypt 证书和搭配 Nginx 实现网站 https 化. 一.SSL证书获取 由于 Let's Encrypy 申请的 SSL 证书只有三个月的有效期,为了实现自动续期,使 ...

  8. 并发王者课-铂金8:峡谷幽会-看CyclicBarrier如何跨越重峦叠嶂

    欢迎来到<并发王者课>,本文是该系列文章中的第21篇,铂金中的第8篇. 在上一篇文章中,我们介绍了CountDownLatch的用法.在协调多线程的开始和结束时,CountDownLatc ...

  9. nginx服务跳转

    1.什么是页面跳转 将URL信息做改变 将URI信息做改变 完成伪静态配置 2.实现页面跳转的方法 http://nginx.org/en/docs/http/ngx_http_rewrite_mod ...

  10. 1、mysql基础入门(1)

    1.mysql基础入门: 1.1.数据库介绍: