用tornado web服务的基本流程

  1. 实现处理请求的Handler,该类继承自tornado.web.RequestHandler,实现用于处理请求的对应方法如:get、post等。返回内容用self.write方法输出。
  2. 实例化一个Application。构造函数的参数是一个Handlers列表,通过正则表达式,将请求与Handler对应起来。通过dict将Handler需要的其他对象以参数的方式传递给Handler的initialize方法。
  3. 初始化一个tornado.httpserver.HTTPServer对象,构造函数的参数是上一步的Application对象。
  4. 为HTTPServer对象绑定一个端口。
  5. 开始IOLoop。

需要用到的特性

由于tornado的亮点是异步请求,所以这里首先想到的是将所有请求都改造为异步的。但是这里遇到一个问题,就是异步函数内一定不能有阻塞调用出现,否则整个IOLoop都会被卡住。这就要求彻底地去改造服务,将所有IO或是用时较长的请求都改造为异步函数。这个工程量是非常大的,需要去修改已有的代码。因此,我们考虑用线程池的方式去实现。当一个线程阻塞在某个请求或IO时,其他线程或IOLoop会继续执行。

另外一个瓶颈就是GIL限制了CPU的并发数量,因此考虑用子进程的方式增加进程数,提高服务能力上限。

综合上面的分析,大致用以下方案:

  1. 通过子进程的方式复制多个进程,使子进程中的只读页指向同一个物理页。
  2. 线程池。回避异步改造的工作量,增加IO的并发量。

测试代码

首先测试线程池,测试用例为:

对sleep页面同时发出两个请求:

  1. 在线程池中运行的函数(这里是self.block_task)能够同时执行。表现为在控制台交替打印出数字。
  2. 两个get请求几乎同时返回,在浏览器上显示返回的内容。

线程池的测试代码如下:

import os
import sys
import time import tornado.httpserver
import tornado.ioloop
import tornado.options
import tornado.web
import tornado.gen
from tornado.concurrent import run_on_executor
from concurrent.futures import ThreadPoolExecutor
from tornado.options import define, options class HasBlockTaskHandler(tornado.web.RequestHandler):
executor = ThreadPoolExecutor(20) #起线程池,由当前RequestHandler持有 @tornado.gen.coroutine
def get(self):
strTime = time.strftime("%Y-%m-%d %H:%M:%S")
print "in get before block_task %s" % strTime
result = yield self.block_task(strTime)
print "in get after block_task"
self.write("%s" % (result)) @run_on_executor
def block_task(self, strTime):
print "in block_task %s" % strTime
for i in range(1, 16):
time.sleep(1)
print "step %d : %s" % (i, strTime)
return "Finish %s" % strTime if __name__ == "__main__":
tornado.options.parse_command_line()
app = tornado.web.Application(handlers=[(r"/sleep", HasBlockTaskHandler)], autoreload=False, debug=False)
http_server = tornado.httpserver.HTTPServer(app)
http_server.bind(8888)
tornado.ioloop.IOLoop.instance().start()

整个代码里有几个位置值得关注:

  1. executor = ThreadPoolExecutor(20)。这是给Handler类初始化了一个线程池。其中concurrent.futures不属于tornado,是python的一个独立模块,在python3中是内置模块,python2.7需要自己安装。
  2. 修饰符@run_on_executor。这个修饰符将同步函数改造为在executor(这里是线程池)上运行的异步函数,内部实现是将被修饰的函数submit到executor,返回一个Future对象。
  3. 修饰符@tornado.gen.coroutine。被这个修饰符修饰的函数,是一个以同步函数方式编写的异步函数。原本通过callback方式编写的异步代码,有了这个修饰符,可以通过yield一个Future的方式来写。被修饰的函数在yield了一个Future对象后将会被挂起,Future对象的结果返回后继续执行。

运行代码后,在两个不同浏览器上访问sleep页面,得到了想要的效果。这里有一个小插曲,就是如果在同一浏览器的两个tab上进行测试,是无法看到想要的效果。第二个get请求会被block,直到第一个get请求返回,服务端才开始处理第二个get请求。这让我一度觉得多线程没有生效,用了半天时间查了很多资料,才看到是浏览器把相同的第二个请求block了,具体链接参考这里

由于tornado很方便地支持多进程模型,多进程的使用要简单很多,在以上例子中,只需要对启动部分稍作改动即可。具体代码如下所示:

if __name__ == "__main__":
tornado.options.parse_command_line()
app = tornado.web.Application(handlers=[(r"/sleep", HasBlockTaskHandler)], autoreload=False, debug=False)
http_server = tornado.httpserver.HTTPServer(app)
http_server.bind(8888)
print tornado.ioloop.IOLoop.initialized()
http_server.start(5)
tornado.ioloop.IOLoop.instance().start()

需要注意的地方有两点:

  1. app = tornado.web.Application(handlers=[(r"/sleep", HasBlockTaskHandler)], autoreload=False, debug=False),在生成Application对象时,要将autoreload和debug两个参数至为False。也就是需要保证在fork子进程之前IOLoop是未被初始化的。这个可以通过tornado.ioloop.IOLoop.initialized()函数来跟。
  2. http_server.start(5)在启动IOLoop之前通过start函数设置进程数量,如果设置为0表示每个CPU都启动一个进程。

最后的效果是可以看到n+1个进程在运行,且公用同一个端口。

Tornado实现多进程/多线程的HTTP服务的更多相关文章

  1. Python 多进程 多线程 协程 I/O多路复用

    引言 在学习Python多进程.多线程之前,先脑补一下如下场景: 说有这么一道题:小红烧水需要10分钟,拖地需要5分钟,洗菜需要5分钟,如果一样一样去干,就是简单的加法,全部做完,需要20分钟:但是, ...

  2. 【原创】uwsgi中多进程+多线程原因以及串行化accept() - thunder_lock说明

    如有不对,请详细指正. 最近再研究uwsgi如何部署python app,看uwsgi的文档,里面有太多的参数,但每个参数的解释太苍白,作为菜鸟的我实在是不懂.想搞清楚uwsgi的工作原因以及里面的一 ...

  3. gdb常用命令及使用gdb调试多进程多线程程序

    一.常用普通调试命令 1.简单介绍GDB 介绍: gdb是Linux环境下的代码调试⼯具.使⽤:需要在源代码⽣成的时候加上 -g 选项.开始使⽤: gdb binFile退出: ctrl + d 或 ...

  4. python采用 多进程/多线程/协程 写爬虫以及性能对比,牛逼的分分钟就将一个网站爬下来!

    首先我们来了解下python中的进程,线程以及协程! 从计算机硬件角度: 计算机的核心是CPU,承担了所有的计算任务.一个CPU,在一个时间切片里只能运行一个程序. 从操作系统的角度: 进程和线程,都 ...

  5. [转帖]Windows和Linux对决(多进程多线程)

    Windows和Linux对决(多进程多线程) https://blog.csdn.net/world_2015/article/details/44920467 太长了 还没看完.. 还是没太理解好 ...

  6. 也说性能测试,顺便说python的多进程+多线程、协程

    最近需要一个web系统进行接口性能测试,这里顺便说一下性能测试的步骤吧,大概如下 一.分析接口频率 根据系统的复杂程度,接口的数量有多有少,应该优先对那些频率高,数据库操作频繁的接口进行性能测试,所以 ...

  7. 多进程多线程GDB调试 (转)

        多进程多线程GDB调试   一.线程调试指南:   1. gdb attach pid 挂载到调试进程  2. gdb$ set scheduler-locking on 只执行当前选定线程的 ...

  8. python爬虫入门八:多进程/多线程

    什么是多线程/多进程 引用虫师的解释: 计算机程序只不过是磁盘中可执行的,二进制(或其它类型)的数据.它们只有在被读取到内存中,被操作系统调用的时候才开始它们的生命期. 进程(有时被称为重量级进程)是 ...

  9. 利用多线程使socket服务端可以与多个客户端同时通讯

    利用多线程使socket服务端可以与多个客户端同时通讯 server import socket 1. 符合TCP协议的手机 server = socket.socket(socket.AF_INET ...

随机推荐

  1. Java——IO系统概览

    前言 对程序语言的设计者来说,创建一个好的输入/输出(IO)系统是一项艰难的任务.这艰难主要来自于要涵盖I/O的所有可能性.不仅存在各种I/O源端和想要与之通信的接收端(源端/接收端:文件.控制台和网 ...

  2. 关于CSS引入方式的详细见解

    关于CSS的发展史这里不做介绍.写博客的原因之一是想帮助那些与我一样喜欢纠结的初入前端的伙伴,希望自己写的帖子能对伙伴有些许帮助:原因之二这些帖子也算自己的一个知识的整理.现在还没有一定的顺序可循,但 ...

  3. Neo4j入门之中国电影票房排行浅析

    什么是Neo4j?   Neo4j是一个高性能的NoSQL图形数据库(Graph Database),它将结构化数据存储在网络上而不是表中.它是一个嵌入式的.基于磁盘的.具备完全的事务特性的Java持 ...

  4. Ambiguous HTTP method Actions require an explicit HttpMethod binding for Swagger 2.0

    异常内容 NotSupportedException: Ambiguous HTTP method for action . Actions require an explicit HttpMetho ...

  5. Vue slot插槽

    插槽用于内容分发,存在于子组件之中. 插槽作用域 父级组件作用域为父级,子级组件作用域为子级,在哪定义的作用域就在哪. 子组件之间的内容是在父级作用域的,无法直接访问子组件里面的数据. 插槽元素 &l ...

  6. 剑指前端(前端入门笔记系列)—— JS基本数据类型及其类型转换

    基本数据类型 ECMAScript中有5中简单数据类型性(也称为基本数据类型):Undefined.Null.Boolean.Number和String,还有一种复杂数据类型——Object,Obje ...

  7. vue学习之vuex

    1  首先还是安装 npm install vuex --save. 2 在src这种创建目录为store 创建 index.js  (getters.js ,actions.js ,mutation ...

  8. 【原】无脑操作:EasyUI Tree实现左键只选择叶子节点、右键浮动菜单实现增删改

    Easyui中的Tree组件使用频率颇高,经常遇到的需求如下: 1.在树形结构上,只有叶子节点才能被选中,其他节点不能被选中: 2.在叶子节点上右键出现浮动菜单实现新增.删除.修改操作: 3.在非叶子 ...

  9. 使用docker快速搭建nginx+php环境

    在朋友的强烈推荐下,走上了docker之路.经过了繁琐的docker环境安装,看了下镜像/容器的简单使用,开始进行nginx+php环境的搭建,本文记录一下在安装过程中的笔记. 原文地址:代码汇个人博 ...

  10. 「技巧」如何快速安装 Sketch 插件

    Sketch拥有强大丰富的插件,但是这些插件天各一方,四处查找下载地址非常麻烦.这里提供一个技巧,通过一个入口可以安装各种插件,基本涵盖了市面上所有靠谱的插件. 准备 Sketch54 Runner ...