ROS探索总结(十四)——move_base(路径规划)
在上一篇的博客中,我们一起学习了ROS定位于导航的总体框架,这一篇我们主要研究其中最重要的move_base包。
在总体框架图中可以看到,move_base提供了ROS导航的配置、运行、交互接口,它主要包括两个部分:
(1) 全局路径规划(global planner):根据给定的目标位置进行总体路径的规划;
(2) 本地实时规划(local planner):根据附近的障碍物进行躲避路线规划。
一、数据结构
rosmsg show MoveBaseActionGoal
[move_base_msgs/MoveBaseActionGoal]:
std_msgs/Header header
uint32 seq
time stamp
string frame_id
actionlib_msgs/GoalID goal_id
time stamp
string id
move_base_msgs/MoveBaseGoal goal
geometry_msgs/PoseStamped target_pose
std_msgs/Header header
uint32 seq
time stamp
string frame_id
geometry_msgs/Pose pose
geometry_msgs/Point position
float64 x
float64 y
float64 z
geometry_msgs/Quaternion orientation
float64 x
float64 y
float64 z
float64 w
二、配置文件
• base_local_planner_params.yaml
• costmap_common_params.yaml
• global_costmap_params.yaml
• local_costmap_params.yaml
三、全局路径规划(global planner)
navfn通过Dijkstra最优路径的算法,计算costmap上的最小花费路径,作为机器人的全局路线。将来在算法上应该还会加入A*算法。
具体见:http://www.ros.org/wiki/navfn?distro=fuerte
四、本地实时规划(local planner)
其中,Trajectory Rollout 和Dynamic Window approaches算法的主要思路如下:
(1) 采样机器人当前的状态(dx,dy,dtheta);
(2) 针对每个采样的速度,计算机器人以该速度行驶一段时间后的状态,得出一条行驶的路线。
(3) 利用一些评价标准为多条路线打分。
(4) 根据打分,选择最优路径。
(5) 重复上面过程。
具体参见:http://www.ros.org/wiki/base_local_planner?distro=groovy
五、ArbotiX仿真——手动设定目标
首先运行ArbotiX节点,并且加载机器人的URDF文件。
roslaunch rbx1_bringup fake_turtlebot.launch
roslaunch rbx1_nav fake_move_base_blank_map.launch
<launch> <!-- Run the map server with a blank map --> <node name="map_server" pkg="map_server" type="map_server" args="$(find rbx1_nav)/maps/blank_map.yaml"/> <include file="$(find rbx1_nav)/launch/fake_move_base.launch" /> <!-- Run a static transform between /odom and /map --> <node pkg="tf" type="static_transform_publisher" name="odom_map_broadcaster" args="0 0 0 0 0 0 /map /odom 100" /> </launch>
rosrun rviz rviz -d `rospack find rbx1_nav`/nav_fuerte.vcg
rostopic pub /move_base_simple/goal geometry_msgs/PoseStamped \
'{ header: { frame_id: "base_link" }, pose: { position: { x: 1.0, y: 0, z: 0 }, orientation: { x: 0, y: 0, z: 0, w: 1 } } }'
rostopic pub /move_base_simple/goal geometry_msgs/PoseStamped \
'{ header: { frame_id: "map" }, pose: { position: { x: 0, y: 0, z: 0 }, orientation: { x: 0, y: 0, z: 0, w: 1 } } }'
然后我们可以认为的确定目标位置,点击rviz上方的2D Nav Goal按键,然后左键选择目标位置,机器人就开始自动导航了。
六、ArbotiX仿真——带有障碍物的路径规划
rosrun rbx1_nav move_base_square.py
#!/usr/bin/env python
import roslib; roslib.load_manifest('rbx1_nav')
import rospy
import actionlib
from actionlib_msgs.msg import *
from geometry_msgs.msg import Pose, Point, Quaternion, Twist
from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
from tf.transformations import quaternion_from_euler
from visualization_msgs.msg import Marker
from math import radians, pi
class MoveBaseSquare():
def __init__(self):
rospy.init_node('nav_test', anonymous=False)
rospy.on_shutdown(self.shutdown)
# How big is the square we want the robot to navigate?
# 设定正方形的尺寸,默认是一米
square_size = rospy.get_param("~square_size", 1.0) # meters
# Create a list to hold the target quaternions (orientations)
# 创建一个列表,保存目标的角度数据
quaternions = list()
# First define the corner orientations as Euler angles
# 定义四个顶角处机器人的方向角度(Euler angles:http://zh.wikipedia.org/wiki/%E6%AC%A7%E6%8B%89%E8%A7%92)
euler_angles = (pi/2, pi, 3*pi/2, 0)
# Then convert the angles to quaternions
# 将上面的Euler angles转换成Quaternion的格式
for angle in euler_angles:
q_angle = quaternion_from_euler(0, 0, angle, axes='sxyz')
q = Quaternion(*q_angle)
quaternions.append(q)
# Create a list to hold the waypoint poses
# 创建一个列表存储导航点的位置
waypoints = list()
# Append each of the four waypoints to the list. Each waypoint
# is a pose consisting of a position and orientation in the map frame.
# 创建四个导航点的位置(角度和坐标位置)
waypoints.append(Pose(Point(square_size, 0.0, 0.0), quaternions[0]))
waypoints.append(Pose(Point(square_size, square_size, 0.0), quaternions[1]))
waypoints.append(Pose(Point(0.0, square_size, 0.0), quaternions[2]))
waypoints.append(Pose(Point(0.0, 0.0, 0.0), quaternions[3]))
# Initialize the visualization markers for RViz
# 初始化可视化标记
self.init_markers()
# Set a visualization marker at each waypoint
# 给每个定点的导航点一个可视化标记(就是rviz中看到的粉色圆盘标记)
for waypoint in waypoints:
p = Point()
p = waypoint.position
self.markers.points.append(p)
# Publisher to manually control the robot (e.g. to stop it)
# 发布TWist消息控制机器人
self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist)
# Subscribe to the move_base action server
# 订阅move_base服务器的消息
self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction)
rospy.loginfo("Waiting for move_base action server...")
# Wait 60 seconds for the action server to become available
# 等待move_base服务器建立
self.move_base.wait_for_server(rospy.Duration(60))
rospy.loginfo("Connected to move base server")
rospy.loginfo("Starting navigation test")
# Initialize a counter to track waypoints
# 初始化一个计数器,记录到达的顶点号
i = 0
# Cycle through the four waypoints
# 主循环,环绕通过四个定点
while i < 4 and not rospy.is_shutdown():
# Update the marker display
# 发布标记指示四个目标的位置,每个周期发布一起,确保标记可见
self.marker_pub.publish(self.markers)
# Intialize the waypoint goal
# 初始化goal为MoveBaseGoal类型
goal = MoveBaseGoal()
# Use the map frame to define goal poses
# 使用map的frame定义goal的frame id
goal.target_pose.header.frame_id = 'map'
# Set the time stamp to "now"
# 设置时间戳
goal.target_pose.header.stamp = rospy.Time.now()
# Set the goal pose to the i-th waypoint
# 设置目标位置是当前第几个导航点
goal.target_pose.pose = waypoints[i]
# Start the robot moving toward the goal
# 机器人移动
self.move(goal)
i += 1
def move(self, goal):
# Send the goal pose to the MoveBaseAction server
# 把目标位置发送给MoveBaseAction的服务器
self.move_base.send_goal(goal)
# Allow 1 minute to get there
# 设定1分钟的时间限制
finished_within_time = self.move_base.wait_for_result(rospy.Duration(60))
# If we don't get there in time, abort the goal
# 如果一分钟之内没有到达,放弃目标
if not finished_within_time:
self.move_base.cancel_goal()
rospy.loginfo("Timed out achieving goal")
else:
# We made it!
state = self.move_base.get_state()
if state == GoalStatus.SUCCEEDED:
rospy.loginfo("Goal succeeded!")
def init_markers(self):
# Set up our waypoint markers
# 设置标记的尺寸
marker_scale = 0.2
marker_lifetime = 0 # 0 is forever
marker_ns = 'waypoints'
marker_id = 0
marker_color = {'r': 1.0, 'g': 0.7, 'b': 1.0, 'a': 1.0}
# Define a marker publisher.
# 定义一个标记的发布者
self.marker_pub = rospy.Publisher('waypoint_markers', Marker)
# Initialize the marker points list.
# 初始化标记点的列表
self.markers = Marker()
self.markers.ns = marker_ns
self.markers.id = marker_id
self.markers.type = Marker.SPHERE_LIST
self.markers.action = Marker.ADD
self.markers.lifetime = rospy.Duration(marker_lifetime)
self.markers.scale.x = marker_scale
self.markers.scale.y = marker_scale
self.markers.color.r = marker_color['r']
self.markers.color.g = marker_color['g']
self.markers.color.b = marker_color['b']
self.markers.color.a = marker_color['a']
self.markers.header.frame_id = 'map'
self.markers.header.stamp = rospy.Time.now()
self.markers.points = list()
def shutdown(self):
rospy.loginfo("Stopping the robot...")
# Cancel any active goals
self.move_base.cancel_goal()
rospy.sleep(2)
# Stop the robot
self.cmd_vel_pub.publish(Twist())
rospy.sleep(1)
if __name__ == '__main__':
try:
MoveBaseSquare()
except rospy.ROSInterruptException:
rospy.loginfo("Navigation test finished.")
现在我们尝试在之前的正方形路径中加入障碍物。把之前运行fake_move_base_blank_map.launch的中断Ctrl-C掉,然后运行:
roslaunch rbx1_nav fake_move_base_obstacle.launch
然后就会看到在rviz中出现了障碍物。然后在运行之前走正方形路线的代码:
rosrun rbx1_nav move_base_square.py
这回我们可以看到,在全局路径规划的时候,机器人已经将障碍物绕过去了,下过如下图:
----------------------------------------------------------------
欢迎大家转载我的文章。
转载请注明:转自古-月
欢迎继续关注我的博客
ROS探索总结(十四)——move_base(路径规划)的更多相关文章
- ROS源码解读(二)--全局路径规划
博客转载自:https://blog.csdn.net/xmy306538517/article/details/79032324 ROS中,机器人全局路径规划默认使用的是navfn包 ,move_b ...
- ROS探索总结(四)——简单的机器人仿真
前边我们已经介绍了ROS的基本情况,以及新手入门ROS的初级教程,现在就要真正的使用ROS进入机器人世界了.接下来我们涉及到的很多例程都是<ROS by Example>这本书的内容,我是 ...
- ROS源码解读(一)--局部路径规划
博客转载自:https://blog.csdn.net/xmy306538517/article/details/78772066 ROS局部路径导航包括Trajectory Rollout 和 Dy ...
- iOS高德地图使用-搜索,路径规划
项目中想加入地图功能,使用高德地图第三方,想要实现确定一个位置,搜索路线并且显示的方法.耗了一番功夫,总算实现了. 效果 WeChat_1462507820.jpeg 一.配置工作 1.申请key 访 ...
- ros局部路径规划-DWA学习
ROS的路径规划器分为全局路径和局部路径规划,其中局部路径规划器使用的最广的为dwa,个人理解为: 首先全局路径规划会生成一条大致的全局路径,局部路径规划器会把全局路径给分段,然后根据分段的全局路径的 ...
- ROS探索总结(十九)——如何配置机器人的导航功能
1.概述 ROS的二维导航功能包,简单来说,就是根据输入的里程计等传感器的信息流和机器人的全局位置,通过导航算法,计算得出安全可靠的机器人速度控制指令.但是,如何在特定的机器人上实现导航功能包的功能, ...
- ROS探索总结(十九)——怎样配置机器人的导航功能
1.概述 ROS的二维导航功能包.简单来说.就是依据输入的里程计等传感器的信息流和机器人的全局位置,通过导航算法,计算得出安全可靠的机器人速度控制指令. 可是,怎样在特定的机器人上实现导航功能包的功能 ...
- ROS机器人路径规划介绍--全局规划
ROS机器人路径规划算法主要包括2个部分:1)全局路径规划算法:2)局部路径规划算法: 一.全局路径规划 global planner ROS 的navigation官方功能包提供了三种全局路径规划器 ...
- Python之路【第二十四篇】:Python学习路径及练手项目合集
Python学习路径及练手项目合集 Wayne Shi· 2 个月前 参照:https://zhuanlan.zhihu.com/p/23561159 更多文章欢迎关注专栏:学习编程. 本系列Py ...
随机推荐
- [Vim]vim使用笔记--分屏操作
我们经常要打开多个文件,不同的窗口操作多个文件,分屏就很好用了. 1 命令模式下: :new,新建文件并分屏, 快捷键,Ctrl+W,然后马上按n键 :spilt 水平分屏,将当前屏分为两个,水平的. ...
- 64位Linux下安装mysql-5.7.13-linux-glibc2.5-x86_64 || 转载:http://www.cnblogs.com/gaojupeng/p/5727069.html
由于公司临时让将Oracle的数据移植到mysql上面,所以让我在公司服务器上面安装一下mysql.下面就是我的安装过程以及一些错误解决思路.其实对于不同版本安装大体都有差不多. 1. 从官网下载 m ...
- Android开发之Intent.Action 各种Action的常见作用
1 Intent.ACTION_MAIN String: android.intent.action.MAIN 标识Activity为一个程序的开始.比较常用. Input:nothing Outpu ...
- java虚拟机 jvm java堆 方法区 java栈
java堆是java应用程序最密切的内存空间.几乎所有的对象都存在堆中.java堆完全自动化管理,通过垃圾回收机制,垃圾对象会自动清理,不需要显式释放. 根据java垃圾回收机制的不同,java堆可能 ...
- Ubuntu 16.04 安装和使用QQ最简洁的方式
推荐参考网址: 1 http://www.ubuntukylin.com/ 2 http://www.ubuntukylin.com/application/ Wine QQ 1 http:// ...
- [django]添加自定义template filter标签
看文档templatetag 直接放在app下的templatetag 文件夹下就好,这里想放到一个公共的目录下,然后写下简单的自定义tag的模板. django1.6 创建 在项目目录下建立如下的文 ...
- String类用法总结
String类在编程中出现的频率是非常高的,熟练掌握是很有必要的 一.常用方法总结: 获取方法 1.1:字符串中包含的字符数,也就是字符串的长度. int length():获取长度 1.2:根据位置 ...
- jQuery 异步上传插件 Uploadify302 使用 (JavaEE Spring MVC)
Uploadify是JQuery的一个上传插件,实现的效果非常不错,带进度显示.而且是Ajax的,省去了自己写Ajax上传功能的麻烦.不过官方提供的实例时php版本的,本文将详细介绍Uploadify ...
- C语言中的内存分配
对于一个C语言程序而言,内存空间主要由以下几个部分组成: 1)程序代码区:用来存储程序的二进制代码 2)全局区/静态存储区 3)BSS段:用来存储未初始化的全局变量和静态变量. 4)栈区:存储局部变量 ...
- c# 单元测试工程如何取得当前项目路径
前言: C#工程项目中有些配置文件,数据文件等不是C#工程文件,但是程序中需要访问,如果写成绝对路径不利于程序的迁移,所以必须写成相对路径.取得相对路径的方法很多,网上的例子也很多,基本上是七种吧,这 ...