二分图应用模版

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <queue>
using namespace std;
const int MAXN=400,MAXM=50005;
int head[MAXN],nume,n,m,maxflow,s,t,cur[MAXN],dep[MAXN];
queue<int>q;
struct edge{
int to,nxt,cap,flow;
}e[MAXM];
void adde(int from,int to,int cap){
e[++nume].to=to;
e[nume].cap=cap;
e[nume].nxt=head[from];
head[from]=nume;
}
bool bfs(){
memset(dep,0,sizeof(dep));
q.push(s);dep[s]=1;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(!dep[v]&&e[i].flow<e[i].cap){
dep[v]=dep[u]+1;
q.push(v);
}
}
}
return dep[t];
}
int dfs(int u,int flow){
if(u==t) return flow;
int tot=0;
for(int &i=cur[u];i&&tot<flow;i=e[i].nxt){
int v=e[i].to;
if(dep[v]==dep[u]+1&&e[i].flow<e[i].cap){
if(int t=dfs(v,min(flow-tot,e[i].cap-e[i].flow))){
e[i].flow+=t;
e[((i-1)^1)+1].flow-=t;
tot+=t;
}
}
}
return tot;
}
void dinic(){
while(bfs()){
for(int i=s;i<=t;i++) cur[i]=head[i];
maxflow+=dfs(s,0x3f3f3f3f);
}
}
bool f[MAXN];
void print(int u){
printf("%d ",u);
f[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v&&!f[v-n]&&e[i].flow){
print(v-n);
return;
}
}
}
int main(){
cin>>n>>m;
s=0;t=n*2+1;
for(int i=1;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
adde(u,v+n,1);adde(v+n,u,0);
}
for(int i=1;i<=n;i++){
adde(s,i,1);adde(i,s,0);
adde(i+n,t,1);adde(t,i+n,0);
}
dinic();
for(int i=1;i<=n;i++){
if(!f[i]) print(i),printf("\n");
}
printf("%d\n",n-maxflow);
}

洛谷 [P2764]最小路径覆盖问题的更多相关文章

  1. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  2. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  3. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

  4. 【刷题】洛谷 P2764 最小路径覆盖问题

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

  5. 洛谷P2764 最小路径覆盖问题(最大流)

    传送门 先说做法:把原图拆成一个二分图,每一个点被拆成$A_i,B_i$,若原图中存在边$(u,v)$,则连边$(A_u,B_v)$,然后$S$对所有$A$连边,所有$B$对$T$连边,然后跑一个最大 ...

  6. 洛谷 P2764 最小路径覆盖问题【匈牙利算法】

    经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...

  7. 洛谷 P2764(最小路径覆盖=节点数-最大匹配)

    给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别 ...

  8. 洛谷P2764 最小路径覆盖问题(二分图)

    题意 给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交 输出方案 Sol 定理:路径覆盖 = 定点数 - 二分图最大匹配数 直接上匈牙利 输出方案的话就不断的从一个点跳匹配边 # ...

  9. 洛谷-p2764(最小路径覆盖)(网络流24题)

    #include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...

随机推荐

  1. HDU2289-Cup-二分

    Cup Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. c+(内存)

    内存是程序运行的基础.所有正在运行的代码都保存在内存里面.内存需要处理各种各样的数据,包括键盘的数据.鼠标的数据.usb的数据.串口的数据.摄像头的数据,那么这些数据经过程序的处理之后,就要进行输出到 ...

  3. 微信小程序初使心得【微信小程序快速入门】

    摘要: 2016年推出微信小程序,时至今日,历经几个版本的更新,已形成了相对实用和稳定的服务平台.本文简单的介绍了微信小程序的入门用法,今后会继续关注和实践. 2016年推出微信小程序,时至今日,历经 ...

  4. 【Zigbee技术入门教程-号外】基于Z-Stack协议栈的抢答系统

    [Zigbee技术入门教程-号外]基于Z-Stack协议栈的抢答系统 广东职业技术学院  欧浩源 一.引言    2017年全国职业院校技能大赛"物联网技术应用"赛项中任务三题2的 ...

  5. [国嵌攻略][182][Sqlite嵌入式数据库移植]

    数据库系统构成 在计算机系统中,保存数据的方式一般有两种: 1.普通文件方式 2.数据库方式 相比于普通文件方式,使用数据库来管理大批量数据具有更高的效率与安全性. 数据库系统一般由三个部分构成 1. ...

  6. zzuli oj 1135 算菜价

    题目: Description 妈妈每天都要出去买菜,但是回来后,兜里的钱也懒得数一数,到底花了多少钱真是一笔糊涂帐.现在好了,作为好儿子(女儿)的你可以给她用程序算一下了,呵呵. Input 输入含 ...

  7. destoon标签

    http://blog.csdn.net/oYuHuaChen/article/details/54601509 ------------

  8. PHP闭包Closure与array_reduce结合的一个范例

    最近在研究laravel5.5的源代码,发现了其中的一段代码觉得挺有意思! 文件:vendor/laravel/framework/src/Illuminate/Pipeline/Pipeline.p ...

  9. IOS学习笔记25—HTTP操作之ASIHTTPRequest(一)

    ASIHTTPRequest是一个第三方开源项目,在现在的IOS应用中多使用到这个开源类库来提供网络操作,相比于SDK提供的网络操作类库,ASIHTTPRequest使用上更加方便.效率更高,同时功能 ...

  10. YAML书写规范

    1. 认识 YAML YAML是一个类似 XML.JSON 的标记性语言.YAML 强调以数据为中心,并不是以标识语言为重点.因而 YAML 本身的定义比较简单,号称"一种人性化的数据格式语 ...