例10-2 uva12169(扩展欧几里得)
题意:已知xi=(a*xi-1+b) mod 10001,且告诉你x1,x3.........x2*t-1,让你求出其偶数列
思路:
枚举a,然后通过x1,x3求出b,再验证是否合适
1.设a, b, c为任意整数。若方程ax+by=c的一组整数解为(x0,y0),则它的任
意整数解都可以写成(x0+kb', y0-ka'),其中a'=a/gcd(a,b),b'=b/gcd(a,b),k取任意整数。
2.设a, b, c为任意整数,g=gcd(a,b),方程ax+by=g的一组解是(x0,y0),则
当c是g的倍数时ax+by=c的一组解是(x0c/g, y0c/g);当c不是g的倍数时无整数解。
x2 = (a * x1 + b) % 10001;
x3 = (a * x2 + b) % 10001;
联立2个式子
x3 = (a * (a * x1 + b) % 10001 + b ) % 10001;
x3 = (a * (a * x1 + b) + b) % 10001;
所以 x3 + 10001 * k = a * a * x1 + (a + 1) * b;
x3 - a * a * x1 = (a + 1) * b + 10001 * (-k);
x3 - a*a*x1已知,就转化成ax+by = c /*扩展欧几里得,在中途再用②判定是否是整数解即可
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <map>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int mod =10001;
ll f[mod]; void gcd(ll a , ll b ,ll &d, ll &x,ll &y)
{
if(!b)
{
d = a ;
x = 1;
y = 0;
return ;
}
else
{
gcd(b , a % b ,d , y , x);
y -= x * (a / b);
return ;
}
} int main()
{
int n;
int t;
scanf("%d",&t);
memset(f,0,sizeof(f));
for(int i = 1; i <= 2*t; i+=2)
scanf("%I64d",&f[i]);
for(int a = 0; a < 10001; a++)
{
ll k , b , d;
ll c = (f[3] - a * a * f[1]);
gcd(mod, a + 1, d , k, b);
if(c % d) //当ax+by = c时,g=gcd(a,b),当c是g倍数时一组解(x*c/g,y*c/g),否则无整数解
continue;
b = b*c/d;
int flag;
for(int i = 2; i <= 2*t; i++)
{
flag = 1;
int tmp = (a*f[i-1]+b)%mod;
if(i%2)
{
if(tmp != f[i])
{
flag = 0;
break;
}
}
else
f[i] = tmp;
}
if(flag)
break;
}
for(int i = 2; i <= 2*t; i+=2)
{
printf("%d\n",f[i]);
}
return 0;
}
例10-2 uva12169(扩展欧几里得)的更多相关文章
- Uva12169 扩展欧几里得模板
Uva12169(扩展欧几里得) 题意: 已知 $x_i=(a*x_{i-1}+b) mod 10001$,且告诉你 $x_1,x_3.........x_{2t-1}$, 让你求出其偶数列 解法: ...
- [POJ1845&POJ1061]扩展欧几里得应用两例
扩展欧几里得是用于求解不定方程.线性同余方程和乘法逆元的常用算法. 下面是代码: function Euclid(a,b:int64;var x,y:int64):int64; var t:int64 ...
- 【扩展欧几里得】NOIP2012同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- [BZOJ1965][AHOI2005] 洗牌 - 扩展欧几里得
题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打 ...
- hdu 1573 A/B (扩展欧几里得)
Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973)= 1). Input 数据的第一行 ...
- 【扩展欧几里得】BAPC2014 I Interesting Integers (Codeforces GYM 100526)
题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...
- 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions
题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...
- hdu_1576A/B(扩展欧几里得求逆元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Me ...
- 51nod--1256 乘法逆元 (扩展欧几里得)
题目: 1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < ...
随机推荐
- 浅谈CPU三级缓存和缓存命中率
CPU: CPU缓存(Cache Memory)是位于CPU与内存之间的临时存储器,它的容量比内存小的多但是交换速度却比内存要快得多.缓存的出现主要是 为了解决CPU运算速度与内存读写速度不匹配的矛盾 ...
- Java中三种比较常见的数组排序
我们学习数组比较常用的数组排序算法不是为了在工作中使用(这三个算法性能不高),而是为了练习for循环和数组.因为在工作中Java API提供了现成的优化的排序方法,效率很高,以后工作中直接使用即可 . ...
- 使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
- 微信公众号Markdown编辑器, 适合代码排版
随着大家都转战微信公众平台,如何快速的编写文章就摆在了首要位置.不可否认,使用微信自带的编辑器可以做出好看的排版,甚至用第三方编辑器有更多的模板.但是,这些全部都需要手动的调整.本来公众平台就算是自媒 ...
- Mybatis-select-返回值类型错误理解
Mybatis :Cause: java.lang.UnsupportedOperationException异常: 今天在写一个练手项目,作为初学Mybatis的小白,想着这里findByEmp_i ...
- angular2 学习笔记 ( angular cli & npm version manage npm 版本管理 )
更新 : 2017-05-05 现在流行 Yarn ! 它是 facebook google 推出的东西. 算是补助 npm 做的不够好的地方. 源码依然是发布去 npm,只是下载接口换掉罢了哦. n ...
- GIT入门笔记(10)- 多种撤销修改场景和对策
场景1:当你改乱了工作区某个文件的内容,想直接丢弃工作区的修改时,用命令git checkout -- file. 场景2:当你不但改乱了工作区某个文件的内容,还添加到了暂存区时,想丢弃修改,分两步, ...
- spring-oauth-server实践:access_token的有效期分析
1.access_token有效期检查 用expiration和new Date()比较!!!!!! 分析目标-->expiration什么时候设置,设置规则如何配置!!!!!!! 2.acce ...
- Asp.NET Core2.0 项目实战入门视频课程_完整版
END OR START? 看到这个标题,你开不开心,激不激动呢? 没错,.net core的入门课程已经完毕了.52ABP.School项目从11月19日,第一章视频的试录制,到今天完整版出炉,离不 ...
- Spark-1.X编译构建及配置安装
前提条件(环境要求) jdk版本:1.7+ scala版本:1.10.4+ maven版本:3.3.3+ 本博客中使用的软件版本 spark版本:spark-1.6.1.tar.gz(源码) jdk版 ...