题目描述

硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。

输入输出格式

输入格式:

第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s

输出格式:

每次的方法数

输入输出样例

输入样例#1:

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
输出样例#1:

4
27

说明

di,s<=100000

tot<=1000

题解:

一开始认为要求出一个4元方程的解的个数,用容斥求出所有GCD(a,b,c,d)|si的解

但时间复杂度太高,且条件限制不好做。

后面看到一种解法:

用dp求f[i]为钱数为i时的方案总数

显然f[i]=signma(f[i-c[j]])

复杂度为O(4*s)

再用容斥原理求出所有方案,减去1超出限制,再减去2超限,还有3和4。再加上1,2超限.....

i超出限制的方案为f[si-(d[j]+1)*c[j]]

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long c[],d[],tot;
long long f[],ans;
int main()
{long long i,j,s;
cin>>c[]>>c[]>>c[]>>c[]>>tot;
f[]=;
for (i=;i<=;i++)
for (j=c[i];j<=;j++)
{
f[j]+=f[j-c[i]];
}
for (i=;i<=tot;i++)
{
for (j=;j<=;j++)
scanf("%I64d",&d[j]);
scanf("%I64d",&s);
ans=f[s];
if ((d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]];
if ((d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]];
if ((d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]];
if ((d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]]; if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]]; if ((d[]+)*c[]+(d[]+)*c[]+(d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]+(d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]+(d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]+(d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*c[]]; if ((d[]+)*c[]+(d[]+)*c[]+(d[]+)*c[]+(d[]+)*d[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*d[]];
cout<<ans<<endl;
}
}

[HAOI2008]硬币购物的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  4. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  5. BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包

    BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...

  6. P1450 [HAOI2008]硬币购物(完全背包+容斥)

    P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...

  7. 【BZOJ】1042: [HAOI2008]硬币购物

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3307  Solved: 2075[Submit][Stat ...

  8. BZOJ1042 [HAOI2008]硬币购物 【完全背包 + 容斥】

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2924  Solved: 1802 [Submit][St ...

  9. 【BZOJ1042】[HAOI2008]硬币购物 容斥

    [BZOJ10492][HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值 ...

  10. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

随机推荐

  1. 用C语言协助办公_01 找出所有不对劲的人

    近期想出一系列用C语言协助办公的视频教程,这是第一个.具体的移步:https://chuanke.baidu.com/v6658388-240377-1789288.html

  2. 利用1.1.1.1进行DNS网络加速,仅需2分钟让网络更快

    NEWS 近日,Cloudflare 和 APNIC联合推出了1.1.1.1DNS网络加速. Cloudflare 运行全球规模最大.速度最快的网络之一.APNIC 是一个非营利组织,管理着亚太和大洋 ...

  3. DEVC使用问题集锦

    一.DEVC++编译出现"Id return 1 exit status" 这是初学者刚用DEVC经常碰到问题,一般有如下解决方法: 1.首先检查下是否有c的exe程序开着,若开着 ...

  4. C语言第二周作业

    一.PTA实验作业 题目一:7-1 计算分段函数 1.实验代码 double x,y; scanf("%lf", &x); if(x >= 0){ y=pow(x,0 ...

  5. 对于分支界限法的理解(补出门门票-week13,结对伙伴对我提的问题的答案)

    首先我的结对伙伴给我提出了一个这样的问题: 使用分支界限法求解"背包问题"的步骤. 当时我是这样回答他的: ub=v+(W-w)x(v(i+1)/w(i+1)) 这个问题我在课上也 ...

  6. 团队作业4——第一次项目冲刺(Alpha版本)11.16

    a. 提供当天站立式会议照片一张 举行站立式会议,讨论项目安排: 整理各自的任务汇报: 全分享遇到的困难一起讨论: 讨论接下来的计划: b. 每个人的工作 (有work item 的ID) 1.前两天 ...

  7. 201621123068 作业07-Java GUI编程

    1. 本周学习总结 1.1 思维导图:Java图形界面总结 2.书面作业 1. GUI中的事件处理 1.1 写出事件处理模型中最重要的几个关键词. 注册.事件.事件源.监听 1.2 任意编写事件处理相 ...

  8. IdentityServer4实战 - 基于角色的权限控制及Claim详解

    一.前言 大家好,许久没有更新博客了,最近从重庆来到了成都,换了个工作环境,前面都比较忙没有什么时间,这次趁着清明假期有时间,又可以分享一些知识给大家.在QQ群里有许多人都问过IdentityServ ...

  9. rsync 自动创建目录的坑点

    rsync同步文件有三种模式: 1.把源站路径下某个文件,同步到目标路径.例如rsync -aR /data/1/2/3/a.txt 1.1.1.1:/data/ ,目标机器将自动创建多层目录存放a. ...

  10. 启动eclipse时出现“Failed to load the JNI shared library jvm.dll”错误及解决

    昨晚安装另一个版本的eclipse,启动时出现了"Failed to load the JNI shared library jvm.dll"错误: 1.刚开始以为是因为当时没有将 ...