#include<bits/stdc++.h>
using namespace std;
int n;
int x,y;
double ans[][];
int a[][];
int m,s,t;
int main()
{
memset(ans,0x7f,sizeof(ans));
cin>>n;
for(int i=;i<=n;i++)
cin>>a[i][]>>a[i][];
cin>>m;
for(int i=;i<=m;i++)
{
cin>>x>>y;
ans[y][x]=ans[x][y]=sqrt(pow(double(a[x][]-a[y][]),)+pow(double(a[x][]-a[y][]),));
}
cin>>s>>t;
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if((i!=j)&&(i!=k)&&(j!=k)&&(ans[i][j]>ans[i][k]+ans[k][j]))
ans[i][j]=ans[i][k]+ans[k][j];
printf("%.2lf\n",ans[s][t]);
return ;
}

最短路径问题(Floyd-Warshall模板)的更多相关文章

  1. 图论之最短路径(1)——Floyd Warshall & Dijkstra算法

    开始图论学习的第二部分:最短路径. 由于知识储备还不充足,暂时不使用邻接表的方法来计算. 最短路径主要分为两部分:多源最短路径和单源最短路径问题 多源最短路径: 介绍最简单的Floyd Warshal ...

  2. 最短路径-Dijkstra+Floyd+Spfa

    Dijkstra算法: Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra ...

  3. 经典问题----最短路径(Floyd弗洛伊德算法)(HDU2066)

    问题简介: 给定T条路,S个起点,D个终点,求最短的起点到终点的距离. 思路简介: 弗洛伊德算法即先以a作为中转点,再以a.b作为中转点,直到所有的点都做过中转点,求得所有点到其他点的最短路径,Flo ...

  4. 数据结构与算法--最短路径之Floyd算法

    数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算 ...

  5. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  6. 最短路径---Dijkstra/Floyd算法

    1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...

  7. 图论-最短路径<Dijkstra,Floyd>

    昨天: 图论-概念与记录图的方法 以上是昨天的Blog,有需要者请先阅读完以上再阅读今天的Blog. 可能今天的有点乱,好好理理,认真看完相信你会懂得 分割线 第二天 引子:昨天我们简单讲了讲图的概念 ...

  8. Floyd算法模板--详解

    对于无权的图来说: 若从一顶点到另一顶点存在着一条路径,则称该路径长度为该路径上所经过的边的数目,它等于该路径上的顶点数减1. 由于从一顶点到另一顶点可能存在着多条路径,每条路径上所经过的边数可能不同 ...

  9. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  10. 最短路径 SPFA P3371 【模板】单源最短路径(弱化版)

    P3371 [模板]单源最短路径(弱化版) SPFA算法: SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复 ...

随机推荐

  1. UUID.randomUUID().toString()

    UUID.randomUUID().toString()是javaJDK提供的一个自动生成主键的方法.UUID(Universally Unique Identifier)全局唯一标识符,是指在一台机 ...

  2. linux命令之read

    对于写bash脚本的朋友,read命令是不可或缺的,需要实践一下就可以了解read命令的大致用途: 编写一个脚本: #!/bin/bash # hao32 test read echo -e &quo ...

  3. 【转】C++易混知识点5:实例讲解Public Protected Private作用域,继承的区别和用意

    大学生涯,涉及到类的作用域,继承都是用的public 共有继承,当时也没想那么多,觉得共有继承多方便,多简单,反正没有太多的限制,不管是类的成员或者是基类的成员函数都可以访问.没有深究.其实这里面真是 ...

  4. jquery实现上传图片本地预览效果

    html: <img id="pic" src="" ><input id="upload" name="fil ...

  5. 浅谈python中的闭包函数

    闭包函数初探 通常我们定义函数都是这样定义的 def foo(): pass 其实在函数式编程中,函数里面还可以嵌套函数,如下面这样 def foo(): print("hello worl ...

  6. Go笔记-结构体

    [定义] type identifier struct{ field1 type1 field2 type2 ... } // 声明 var s identifier identifier.field ...

  7. 转载-Oracle ORACLE的sign函数和DECODE函数

    原文地址:http://www.cnblogs.com/BetterWF/archive/2012/06/12/2545829.html 转载以备用 比较大小函数 sign 函数语法:sign(n) ...

  8. FreeMarker template error: The following has evaluated to null or missing: ==> blogger.md [in template "admin/about.ftl" at line 44, column 84]

    FreeMarker template error:The following has evaluated to null or missing:==> blogger.md [in templ ...

  9. Visual Studio 2017 Enterprise (15.3)

    版本15.3更新在用户离线下载时更加人性化,包含了进度显示,下载出错可以输入R,进行下载的重新尝试,并在当前下载框下继续下载为完成的作业,结合 --layout 参数的离线文件的检查和修复,并且在下载 ...

  10. jquary 单选,多选,select 获取和设置值 jquary自定义函数

    <%@ page contentType="text/html; charset=UTF-8"%> <%@ taglib prefix="c" ...