1. 官方文档及参考链接

l 关于词典问题Issue,首先参考:FAQ

l 自定义词典其实是基于规则的分词,它的用法参考这个issue

l 如果有些数量词、字母词需要分词,可参考:P2P和C2C这种词没有分出来,希望加到主词库

l 关于词性标注:可参考词性标注

2. 源码解析

分析 com.hankcs.demo包下的DemoCustomDictionary.java 基于自定义词典使用标准分词HanLP.segment(text)的大致流程(HanLP版本1.5.3)。首先把自定义词添加到词库中:

CustomDictionary.add("攻城狮");

CustomDictionary.insert("白富美", "nz 1024");//指定了自定义词的词性和词频

CustomDictionary.add("单身狗", "nz 1024 n 1")//一个词可以有多个词性

添加词库的过程包括:

l 若启用了归一化HanLP.Config.Normalization = true;,则会将自定义词进行归一化操作。归一化操作是基于词典文件 CharTable.txt 进行的。

l 判断自定义词是否存在于自定义核心词典中

public static boolean add(String word)

{

if (HanLP.Config.Normalization) word = CharTable.convert(word);

if (contains(word)) return false;//判断DoubleArrayTrie和BinTrie是否已经存在word

return insert(word, null);

}

l 当自定义词不在词典中时,构造一个CoreDictionary.Attribute对象,若添加的自定义词未指定词性和词频,则词性默认为 nz,频次为1。然后试图使用DAT树将该 Attribute对象添加到核心词典中,由于我们自定义的词未存在于核心词典中,因为会添加失败,从而将自定义词放入到BinTrie中。因此,不在核心自定义词典中的词(动态增删的那些词语)是使用BinTrie树保存的。

public static boolean insert(String word, String natureWithFrequency)

{

if (word == null) return false;

if (HanLP.Config.Normalization) word = CharTable.convert(word);

CoreDictionary.Attribute att = natureWithFrequency == null ? new CoreDictionary.Attribute(Nature.nz, 1) : CoreDictionary.Attribute.create(natureWithFrequency);

if (att == null) return false;

if (dat.set(word, att)) return true;

//"攻城狮"是动态加入的词语. 在核心词典中未匹配到,在自定义词典中也未匹配到, 动态增删的词语使用BinTrie保存

if (trie == null) trie = new BinTrie<CoreDictionary.Attribute>();

trie.put(word, att);

return true;

}

将自定义添加到BinTrie树后,接下来是使用分词算法分词了。假设使用的标准分词(viterbi算法来分词):

List<Vertex> vertexList = viterbi(wordNetAll);

分词具体过程可参考:

分词完成之后,返回的是一个 Vertex 列表。如下图所示:

然后根据 是否开启用户自定义词典 配置来决定将分词结果与用户添加的自定义词进行合并。默认情况下,config.useCustomDictionary是true,即开启用户自定义词典。

if (config.useCustomDictionary)

{

if (config.indexMode > 0)

combineByCustomDictionary(vertexList, wordNetAll);

else combineByCustomDictionary(vertexList);

}

combineByCustomDictionary(vertexList)由两个过程组成:

l 合并DAT 树中的用户自定义词。这些词是从 词典配置文件 CustomDictionary.txt 中加载得到的。

l 合并BinTrie 树中的用户自定义词。这些词是 代码中动态添加的:CustomDictionary.add("攻城狮")

//DAT合并

DoubleArrayTrie<CoreDictionary.Attribute> dat = CustomDictionary.dat;

....

// BinTrie合并

if (CustomDictionary.trie != null)//用户通过CustomDictionary.add("攻城狮"); 动态增加了词典

{

....

合并之后的结果如下:

3. 关于用户自定义词典

总结一下,开启自定义分词的流程基本如下:

l HanLP启动时加载词典文件中的CustomDictionary.txt 到DoubleArrayTrie中;用户通过 CustomDictionary.add("攻城狮");将自定义词添加到BinTrie中。

l 使用某一种分词算法分词

l 将分词结果与DoubleArrayTrie或BinTrie中的自定义词进行合并,最终返回输出结果

HanLP作者在HanLP issue783:上面说:词典不等于分词、分词不等于自然语言处理;推荐使用语料而不是词典去修正统计模型。由于分词算法不能将一些“特定领域”的句子分词正确,于是为了纠正分词结果,把想要的分词结果添加到自定义词库中,但最好使用语料来纠正分词的结果。另外,作者还说了在以后版本中不保证继续支持动态添加自定义词典。以上是阅读源码过程中的一些粗浅理解,仅供参考。

章转载自hapjin 的博客

HanLP用户自定义词典源码分析详解的更多相关文章

  1. HanLP用户自定义词典源码分析

    HanLP用户自定义词典源码分析 1. 官方文档及参考链接 关于词典问题Issue,首先参考:FAQ 自定义词典其实是基于规则的分词,它的用法参考这个issue 如果有些数量词.字母词需要分词,可参考 ...

  2. 对javaEE Tutorial上hello2的源码分析详解

    首先: java EE 上的hello2项目是一个部署在glass fish上的开发源码的java web项目,在终端通过命令行使用maven进行打包成.war文件,最后部署到相关的glass fis ...

  3. Nop--NopCommerce源码架构详解专题目录

    最近在研究外国优秀的ASP.NET mvc电子商务网站系统NopCommerce源码架构.这个系统无论是代码组织结构.思想及分层都值得我们学习.对于没有一定开发经验的人要完全搞懂这个源码还是有一定的难 ...

  4. Hadoop3.1.1源码Client详解 : 入队前数据写入

    该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 紧接着上一篇: Hadoop3.1.1源码Client详解 : 写入准备-RPC调用与流的建立 先给出 ...

  5. Hadoop3.1.1源码Client详解 : Packet入队后消息系统运作之DataStreamer(Packet发送) : 主干

    该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 在上一章(Hadoop3.1.1源码Client详解 : 写入准备-RPC调用与流的建立) 我们提到, ...

  6. Hadoop3.1.1源码Client详解 : Packet入队后消息系统运作之ResponseProcessor(ACK接收)

    该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 紧接着上一篇文章: Hadoop3.1.1源码Client详解 : Packet入队后消息系统运作之D ...

  7. NopCommerce源码架构详解--初识高性能的开源商城系统cms

    很多人都说通过阅读.学习大神们高质量的代码是提高自己技术能力最快的方式之一.我觉得通过阅读NopCommerce的源码,可以从中学习很多企业系统.软件开发的规范和一些新的技术.技巧,可以快速地提高我们 ...

  8. NopCommerce源码架构详解

    NopCommerce源码架构详解--初识高性能的开源商城系统cms   很多人都说通过阅读.学习大神们高质量的代码是提高自己技术能力最快的方式之一.我觉得通过阅读NopCommerce的源码,可以从 ...

  9. Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览

    一.设计原理 1.Hadoop架构: 流水线(PipeLine) 2.Hadoop架构: HDFS中数据块的状态及其切换过程,GS与BGS 3.Hadoop架构: 关于Recovery (Lease ...

随机推荐

  1. GIL 相关 和进程池

    #GIL (global interpreter Lock) #全局解释器锁 :锁是为了避免资源竞争造成数据错乱 #当一个py启动后 会先执行主线程中的代码#在以上代码中有启动了子线程 子线程的任务还 ...

  2. 【转】Delphi XE10 Android Splash设备自适应和沉浸式状态条

    再次提笔写博客,已经相隔7年,原来的CSDN账号需要手机验证,而我的手机又捆绑到这个账号了,就用新账号吧,不想折腾了. 原账号的帖子,有研究DICOM3.0的可以看下:http://blog.csdn ...

  3. C# Sublime text3 环境配置(一)

    下载地址:http://www.sublimetext.com/3 1.安装完之后,tools菜单下最下一个点一下,安装Package Control 插件2.Preferences菜单下,点Pack ...

  4. 移动端开发rem单位

    1.用js计算 <script> (function (doc, win) { var docEl = doc.documentElement, resizeEvt = 'orientat ...

  5. Python socket简单操作

    #服务端:#导入socket模块 import socket #创建socket对象,创建了一个手机 server = socket.socket() #给程序设置一个ip地址和端口号,买了个手机卡 ...

  6. (6个name="hobby"的复选项,两个按钮)来区分三种方法的不同---区别getElementByID,getElementsByName,getElem

    <form>          请选择你爱好:<br>          <input type="checkbox" name="hobb ...

  7. Android: protecting the kernel

    Linux内置安全机制 Address space separation/process isolation unix permissions DAC capabilities SELinux sec ...

  8. php腾讯面试题(转)

    一.PHP开发部分 1.合并两个数组有几种方式,试比较它们的异同 答:1.array_merge() 2.’+’ 3.array_merge_recursive array_merge 简单的合并数组 ...

  9. php经典算法实现(转)

    <?  //--------------------  // 基本数据结构算法 //--------------------  //二分查找(数组里查找某个元素)  function bin_s ...

  10. 纯C:url base64

    纯代码,来自互联网 base64.h #ifndef __BASE64_H__ #define __BASE64_H__ #ifdef __cplusplus extern "C" ...