Lucas卢卡斯定理
当$p$为素数时
$$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$$
设$n=s*p+q,m\equiv t*p+r(q,r<=p)$
我们要证$C_{s*p+q}^{t*p+r}\equiv C_s^t*C_q^r$
首先得有个前置知识,费马小定理$x^p\equiv x(mod\ p)$
那么$(x+1)^p\equiv x+1(mod\ p)$
且$x^p+1\equiv x+1(mod\ p)$
所以$(x+1)^p\equiv x^p+1$
然后$(x+1)^n\equiv (x+1)^{s*p+q}$
$\equiv ((x+1)^p)^s*(x+1)^q$
$\equiv (x^p+1)^s*(x+1)^q$
然后用二项式定理展开
$\equiv \sum _{i=0}^s C_s^i*x^{i*p}*\sum_{j=0}^qC_q^j*x^j$
总之就是$(x+1)^p\equiv \sum _{i=0}^s C_s^i*x^{i*p}*\sum_{j=0}^qC_q^j*x^j$
然后考虑把两边的多项式展开一下
那么两边肯定都有$x^m$即$x^{t*p+r}$这一项(这是最上面的假设)
左边的$x^m$的系数,根据上面的性质4推出来,应该是$C_n^m$
然后右边嘞?只有$i=t,j=r$的时候才会有这一项,所以这一项的系数就是$C_s^t*C_q^r$
然后又因为$s=n/p,t=n\%p,q=m/p,r=m\%p$
然后就能证明$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$
然而万一$q<r$该怎么办?那样的话$j$根本不可能等于$r$啊?
所以那样的话答案就是$0$
因为上面乘上$C_{n\%p}^{m\%p}$答案就是$0$
如何证明?
我们设$f=n-m=z*p+x$
因为$r>t,x+r\equiv t(mod\ p)$
所以$x+r=p+t$
又因为$z*p+x+q*p+r=s*p+t$
所以$z+q=s-1$
那么带进通项公式$C_n^m=\frac {n!}{m!*f!}$之后,分子中有$s$个$p$的倍数(不考虑有$p^2$之类的,因为下面有的话上面肯定也有),分母中有$s-1$个$p$的倍数,抵消之后分子中还有一个$p$,那么这个数就是$p$的倍数,模$p$肯定余$0$啦
累死我了……
// luogu-judger-enable-o2
//minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline ll read(){
#define num ch-'0'
char ch;bool flag=;ll res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
ll n,m,p;
ll fac[N],inv[N];
void init(){
fac[]=;
for(int i=;i<=p;++i)
fac[i]=fac[i-]*i%p;
}
ll qpow(ll a,ll b){
ll res=;
while(b){
if(b&) res=res*a%p;
b>>=,a=a*a%p;
}
return res;
}
ll C(ll n,ll m){
if(m>n) return ;
return fac[n]*qpow(fac[m]*fac[n-m],p-)%p;
}
ll Lucas(ll n,ll m){
if(m==) return ;
return Lucas(n/p,m/p)*C(n%p,m%p)%p;
}
int main(){
int T=read();
while(T--){
n=read(),m=read(),p=read();
init();
printf("%lld\n",Lucas(m+n,m));
}
return ;
}
Lucas卢卡斯定理的更多相关文章
- Lucas 卢卡斯定理
Lucas: 卢卡斯定理说白了只有一条性质 $$ C^n_m \equiv C^{n/p}_{m/p} \times C^{n \bmod p}_{m \bmod p} \ (mod \ \ p) $ ...
- CRT中国剩余定理 & Lucas卢卡斯定理
数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...
- Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)
Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...
- Lucas(卢卡斯)定理
公式 $$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p为素数)$$ 代码如下 typedef long long ll; ll mod_pow(ll x, ...
- 卢卡斯定理 Lucas (p为素数)
证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...
- 卢卡斯定理Lucas
卢卡斯定理Lucas 在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m ...
- 数论篇7——组合数 & 卢卡斯定理(Lucas)
组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...
- Lucas(卢卡斯)定理
Lucas定理 对于C(m,n)%P(P是质数)这样的问题,可以通过预处理阶乘和阶乘的逆元,来快速计算.但是当m,n大于P时,就不能保证m,n与P互质了,但不互质的情况下,乘法逆元不存在,此时就需要卢 ...
- 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...
随机推荐
- 洛谷 P4408 逃学的小孩 解题报告
P4408 [NOI2003]逃学的小孩 题目描述 Chris家的电话铃响起了,里面传出了Chris的老师焦急的声音:"喂,是Chris的家长吗?你们的孩子又没来上课,不想参加考试了吗?&q ...
- [转载]C++的顺序点(sequence point)和副作用(side effect)
有关i=(++i)+(i++)这种东西的深入解释,不仅仅是简单粗暴undefined behavior. ==== 一.副作用(side effect) 表达式有两种功能:每个表达式都产生一个值( v ...
- P1186 玛丽卡 删边最短路最大值
反正蛮水的一道题. 胡雨菲一句话让我的代码减少了10行还A了,之前的是个错的. 思路:先求出最短路,然后依次删去最短路上的每一条边,跑最短路求最大值. 关于删边:我的想法是当作链表删除,把last的n ...
- 在exe运行界面按右键(不用按鼠标右键)
单击该键 用于夜晚在exe运行界面粘贴数据.(正常来说直接按右键即可) 从此粘贴数据不会影响睡觉的人……etc.在宿舍……
- 最短路算法--SPFA+嵌套map
hdu 2066 #include<iostream> #include<cstdio> #include<cstring> #include<queue ...
- 2018.9青岛网络预选赛(K)
传送门:Problem K https://www.cnblogs.com/violet-acmer/p/9664805.html 题意: 给你n个数,找出满足条件的最多的数的个数. 题解: 满足条件 ...
- WCF开发实战系列五:创建WCF客户端程序
WCF开发实战系列五:创建WCF客户端程序 (原创:灰灰虫的家http://hi.baidu.com/grayworm) 在前面的三篇文章中我们分别介绍了WCF服务的三种载体:IIS.Self-Hos ...
- python自定义函数的参数之四种表现形式
(1)def a(x,y):print x,y 这是最常见的定义方式,调用该函数,a(1,2)则x取1,y取2,形参与实参相对应,如果a(1)或者a(1,2,3)则会报错 (2)def a(x,y=3 ...
- .Net进阶系列(11)-异步多线程(委托BeginInvoke)(被替换)
一. BeginInvoke最后两个参数的含义 倒数第二个参数:指该线程执行完毕后的回调函数:倒数第一个参数:可以向回调函数中传递参数. 下面以一段代码说明: /// <summary> ...
- 使用eclipse创建web项目的项目图文步骤
在eclipse中使用maven ① maven插件:eclipse内置 ②maven插件的设置: [1]installations:指定maven核心程序的位置,不建议使用自带的maven程序而应该 ...