题解:

感觉多了解一些npc问题是很有用的。。

就不会像我一样完全不考虑模数的性质

前面60分大概是送分

后面主要考虑一下%6带来的影响

平常都是那么大的模数,突然这么小???

考虑正好使用k种颜色的方案数 f[k]*A(n,k) 而A(n,k)=n!/(n-k)!

显然可以发现,当k>=3的时候 这个数一定是6的倍数啊

这样的话,就只需要考虑1种颜色和两种颜色的情况就可以了

一种显然只有m=0的时候才存在1种方案

而两种呢 当且仅当一个联通块是一个二分图的时候才会满足

那么答案就等于2^l 其中l等于联通块的数目

另外注意特殊情况 当m=0时,会出现全黑的情况(白) 要减去

A. 【UNR #2】UOJ拯救计划的更多相关文章

  1. [UOJ UNR#2 UOJ拯救计划]

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 感觉这题有点神... 模数是6比较奇怪,考虑计算答案的式子. Ans=$\sum_{i=1}^{k} P(k,i)*ans(i)$ a ...

  2. 【UOJ#308】【UNR#2】UOJ拯救计划

    [UOJ#308][UNR#2]UOJ拯救计划 题面 UOJ 题解 如果模数很奇怪,我们可以插值一下,设\(f[i]\)表示用了\(i\)种颜色的方案数. 然而模\(6\)这个东西很有意思,\(6=2 ...

  3. uoj308 【UNR #2】UOJ拯救计划

    传送门:http://uoj.ac/problem/308 [题解] 考虑枚举用了$i$所学校,那么贡献为${k \choose i} * cnt * i!$ 意思是从$k$所选$i$所出来染色,$c ...

  4. 【UNR #2】UOJ拯救计划

    UOJ小清新题表 题目内容 UOJ链接 题面太长了(其实是我懒得改LaTeX了) 一句话题意: 给出 \(n\) 个点和 \(m\) 条边,对其进行染色,共 \(k\) 种颜色,要求同一条边两点颜色不 ...

  5. 2018.10.25 uoj#308. 【UNR #2】UOJ拯救计划(排列组合)

    传送门 有一个显然的式子:Ans=∑A(n,i)∗用i种颜色的方案数Ans=\sum A(n,i)*用i种颜色的方案数Ans=∑A(n,i)∗用i种颜色的方案数 这个东西貌似是个NPCNPCNPC. ...

  6. Uoj308【UNR #2】UOJ拯救计划

    分析:比较难分析的一道题,先把式子写出来,ans=∑C(k,i)*f(i),f(i)是选i个颜色的方案数.这个模数有点奇怪,比较小而且是合数,说不定就会有某种规律,如果i >= 3,可以发现C( ...

  7. uoj#308. 【UNR #2】UOJ拯救计划(并查集)

    传送门 如果把答案写出来,就是\(\sum_{i=1}^ki!\times {k\choose i}\times f_i\),其中\(f_i\)为选\(i\)种颜色方案 发现如果\(i\geq 3\) ...

  8. UOJ #460 新年的拯救计划

    清真的构造题 UOJ# 460 题意 求将$ n$个点的完全图划分成最多的生成树的数量,并输出一种构造方案 题解 首先一棵生成树有$ n-1$条边,而原完全图只有$\frac{n·(n-1)}{2}$ ...

  9. UOJ#460. 新年的拯救计划 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ460.html 题解 本题的构造方法很多.这里只介绍一种. 首先,总边数为 $\frac{n(n-1)}2 ...

随机推荐

  1. 从零开始搭建Salt Web之初探salt-api

    Salt-API入门 在Google搜索栏输入salt-api,会有一些讲述如何使用Salt-API的文章,确实有效,不过都是建立 在将Salt安装在默认目录下的情况下,即通过apt-get inst ...

  2. MyBatis联合查询和使用association 进行分步式查询

    查询Emp的同时,查出emp对应的部门Department 方法1:联合查询,使用级联属性封装结果集 <!-- 联合查询,使用级联属性封装结果集 type:要自定义规则的javaBean类型 i ...

  3. HTTP协议(下午茶)

    http://www.kancloud.cn/kancloud/tealeaf-http/43840   下午茶

  4. Hadop 基础

    HDFS 体系结构 mapreduce 体系结构和算法 haddop 集群 zookeeper 操作:HBase 体系结构Hive /Sqoop 体系结构和基本操作: mapreduce 逻辑处理数据 ...

  5. 给父元素与子元素分别设置visibility注意点

    由于机顶盒的终端特性原因,不能用display:hidden去做隐藏,就选择了visibility:hidden. 在这里遇到一个现象: 给父元素设置了hidden,但是里面的子元素依然可见.以为只是 ...

  6. B - 低阶入门膜法 - D-query (查询区间内有多少不同的数)

    题目链接:https://cn.vjudge.net/contest/284294#problem/B 题目大意:查询区间内有多少个不相同的数. 具体思路:主席树的做法,主席树的基础做法是查询区间第k ...

  7. Java对象与JSON互相转换jsonlib以及手动创建JSON对象与数组——(二)

    首先声明一下,jsonlib转换与GSON相比太差劲了,操作不是一般的繁琐.GSON可以直接转换成各种集合与对象类型.强烈推荐使用GSON.而且GSON一个方法就可以解决,jsonlib转来转去太繁琐 ...

  8. Libevent源码分析系列

    1.使用libevent库     源码那么多,该怎么分析从哪分析呢?一个好的方法就是先用起来,会用了,然后去看底层相应的源码,这样比较有条理,自上向下掌握.下面用libevent库写个程序,每隔1秒 ...

  9. 利用mycat实现基于mysql5.5主从复制的读写分离

    整体步骤: 1.准备好两台服务器,一台作为主数据库服务器,一台作为从服务器,并安装好mysql数据库,此处略 2.配置好主从同步 3.下载JDK配置mycat依赖的JAVA环境,mycat采用java ...

  10. LVS负载均衡器DR模型的实现

    概述: 在大规模互联网应用中,负载均衡设备是必不可少的一个节点,源于互联网应用的高并发和大流量的冲击压力,我们通常会在服务端部署多个无状态的应用服务器和若干有状态的存储服务器(数据库.缓存等等) 一. ...