#include<bits/stdc++.h>
using namespace std;
const int MAXN=;
int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元
int gcd(int a,int b){ if(b == ) return a; else return gcd(b,a%b);}
inline int lcm(int a,int b){return a/gcd(a,b)*b;}//先除后乘防溢出}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
int i,j,k;
int max_r;// 当前这列绝对值最大的行.
int col;//当前处理的列
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index; for(int i=;i<=var;i++){
x[i]=;
free_x[i]=true;
} //转换为阶梯阵.
col=; // 当前处理的列
for(k = ;k < equ && col < var;k++,col++){// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
max_r=k;
for(i=k+;i<equ;i++){
if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
}
if(max_r!=k){// 与第k行交换.
for(j=k;j<var+;j++) swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==){// 说明该col列第k行以下全是0了,则处理当前行的下一列.
k--;
continue;
}
for(i=k+;i<equ;i++){// 枚举要删去的行.
if(a[i][col]!=){
LCM = lcm(abs(a[i][col]),abs(a[k][col]));
ta = LCM/abs(a[i][col]);
tb = LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<)tb=-tb;//异号的情况是相加
for(j=col;j<var+;j++){
a[i][j] = a[i][j]*ta-a[k][j]*tb;
}
}
}
}
// 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
for (i = k; i < equ; i++){ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
if (a[i][col] != ) return -;
}
// 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
// 且出现的行数即为自由变元的个数.
if (k < var){
return var - k; // 自由变元有var - k个.
}
// 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
// 计算出Xn-1, Xn-2 ... X0.
for (i = var - ; i >= ; i--){
temp = a[i][var];
for (j = i + ; j < var; j++){
if (a[i][j] != ) temp -= a[i][j] * x[j];
}
if (temp % a[i][i] != ) return -; // 说明有浮点数解,但无整数解.
x[i] = temp / a[i][i];
}
return ;
}
int main(void){
// freopen("in.txt", "r", stdin);
// freopen("out.txt","w",stdout);
int i, j;
int equ,var;
while (scanf("%d %d", &equ, &var) != EOF){
memset(a, , sizeof(a));
for (i = ; i < equ; i++){
for (j = ; j < var + ; j++){
scanf("%d", &a[i][j]);
}
}
int free_num = Gauss(equ,var);
if (free_num == -) printf("无解!\n");
else if (free_num == -) printf("有浮点数解,无整数解!\n");
else if (free_num > ){
printf("无穷多解! 自由变元个数为%d\n", free_num);
for (i = ; i < var; i++){
if (free_x[i]) printf("x%d 是不确定的\n", i + );
else printf("x%d: %d\n", i + , x[i]);
}
}else{
for (i = ; i < var; i++){
printf("x%d: %d\n", i + , x[i]);
}
}
printf("\n");
}
return ;
}
#include<bits/stdc++.h>
#define LL long long
#define LD long double
#define ull unsigned long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end() #define r register
#define ll long long using namespace std; const int N = 1e6 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e6 + ;
const int p = 1e6 + ;
const double eps = 1e-;
const double PI = acos(-); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < ) a += mod;}
template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} int n = ;
LL a[][], ans[N], maxi, tmp; ll ksm(r ll x,r int y)
{
if(!y) return ;
r ll ret=ksm(x,y>>);
if(y&) return ret*ret%p*x%p;
return ret*ret%p;
} int Ask(int x) { printf("? %d\n", x); fflush(stdout); int y; scanf("%d", &y); return y;}
// 偷的
int main() {
for(int i = ; i <= n; i++) {
LL val = Ask(i - );
for(int j = ; j <= n; j++) a[i][j] = ksm(i - , j - );
a[i][n + ] = val;
}
for(r int i=;i<=n;i++)
{
if(!a[i][i])//主元不能为0
{
maxi=;
for(r int j=i+;j<=n&&!maxi;j++)
if(a[j][i]) maxi=j;
if(!maxi) continue;//如果一整列都为0,不需要消元
for(r int j=i;j<=n+;j++)
tmp=a[maxi][j],a[maxi][j]=a[i][j],a[i][j]=tmp;
}
for(r int j=i+;j<=n;j++)
{
tmp=a[j][i];
if(!tmp) continue;//已经为0,不需要消元
for(r int k=i;k<=n+;k++)
a[j][k]=((a[j][k]*a[i][i]-a[i][k]*tmp)%p+p)%p;
}
}
for(r int i=n;i;i--)
{
for(r int j=i+;j<=n;j++)
a[i][n+]=((a[i][n+]-ans[j]*a[i][j])%p+p)%p;
ans[i]=a[i][n+]*ksm(a[i][i],p-)%p;
}
for(int i = ; i < p; i++) {
LL ret = ;
for(int j = ; j < ; j++)
ret = (ret + ksm(i, j) * ans[j + ] % mod) % mod;
if(ret==) {
printf("! %d\n", i);
fflush(stdout);
return ;
}
}
puts("! -1");
fflush(stdout);
return ;
}
#include<bits/stdc++.h>
#define LL long long
#define LD long double
#define ull unsigned long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end() #define r register
#define ll long long using namespace std; const int N = 1e6 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e6 + ;
const int p = 1e6 + ;
const double eps = 1e-;
const double PI = acos(-); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < ) a += mod;}
template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} int n = ;
LL a[][], ans[N], maxi, tmp; ll ksm(r ll x,r int y)
{
if(!y) return ;
r ll ret=ksm(x,y>>);
if(y&) return ret*ret%p*x%p;
return ret*ret%p;
} int Ask(int x) { printf("? %d\n", x); fflush(stdout); int y; scanf("%d", &y); return y;}
// 偷的
int main() {
for(int i = ; i <= n; i++) {
LL val = Ask(i - );
for(int j = ; j <= n; j++) a[i][j] = ksm(i - , j - );
a[i][n + ] = val;
}
for(r int i=;i<=n;i++)
{
if(!a[i][i])//主元不能为0
{
maxi=;
for(r int j=i+;j<=n&&!maxi;j++)
if(a[j][i]) maxi=j;
if(!maxi) continue;//如果一整列都为0,不需要消元
for(r int j=i;j<=n+;j++)
tmp=a[maxi][j],a[maxi][j]=a[i][j],a[i][j]=tmp;
}
for(r int j=i+;j<=n;j++)
{
tmp=a[j][i];
if(!tmp) continue;//已经为0,不需要消元
for(r int k=i;k<=n+;k++)
a[j][k]=((a[j][k]*a[i][i]-a[i][k]*tmp)%p+p)%p;
}
}
for(r int i=n;i;i--)
{
for(r int j=i+;j<=n;j++)
a[i][n+]=((a[i][n+]-ans[j]*a[i][j])%p+p)%p;
ans[i]=a[i][n+]*ksm(a[i][i],p-)%p;
}
for(int i = ; i < p; i++) {
LL ret = ;
for(int j = ; j < ; j++)
ret = (ret + ksm(i, j) * ans[j + ] % mod) % mod;
if(ret==) {
printf("! %d\n", i);
fflush(stdout);
return ;
}
}
puts("! -1");
fflush(stdout);
return ;
}

高斯消元 o(n^3) 取摸和不取摸的更多相关文章

  1. ACM学习历程—SGU 275 To xor or not to xor(xor高斯消元)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=275 这是一道xor高斯消元. 题目大意是给了n个数,然后任取几个数,让他们xor和 ...

  2. 2017湘潭赛 A题 Determinant (高斯消元取模)

    链接 http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id/1260 今年湘潭的A题 题意不难 大意是把n*(n+1)矩阵去掉某一列 ...

  3. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  4. POJ 1222 EXTENDED LIGHTS OUT (高斯消元)

    题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为 ...

  5. poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8481   Accepted: 5479 Description In an ...

  6. UVALive 6449 IQ Test --高斯消元?

    题意:给你一串数字,问这串数字符合f[n] = a*f[n-1],f[n] = a*f[n-1]+b*f[n-2],f[n] = a*f[n-1]+b*f[n-2]+c*f[n-3]这几个方程中的哪个 ...

  7. hdu 5755(高斯消元——模线性方程组模板)

    PS. 看了大神的题解,发现确实可以用m个未知数的高斯消元做.因为确定了第一行的情况,之后所有行的情况都可以根据第一行推. 这样复杂度直接变成O(m*m*m) 知道了是高斯消元后,其实只要稍加处理,就 ...

  8. Acdream1217 Cracking' RSA(高斯消元)

    题意:给你m个数(m<=100),每个数的素因子仅来自于前t(t<=100)个素数,问这m个数的非空子集里,满足子集里的数的积为完全平方数的有多少个. 一开始就想进去里典型的dp世界观里, ...

  9. HDU 3364 Lanterns (高斯消元)

    题意:有n个灯和m个开关,每个开关控制数个灯的状态改变,给出k条询问,问使灯的状态变为询问中的状态有多少种发法. 析:同余高斯消元法,模板题,将每个开关控制每个灯列成行列式,最终状态是结果列,同余高斯 ...

  10. HDU5088——Revenge of Nim II(高斯消元&矩阵的秩)(BestCoder Round #16)

    Revenge of Nim II Problem DescriptionNim is a mathematical game of strategy in which two players tak ...

随机推荐

  1. 最佳加法表达式(dp)

    题目描述: 有一个由1..9组成的数字串.问如果将m个加 号插入到这个数字串中,在各种可能形成的 表达式中,值最小的那个表达式的值是多少 (本题只能用于整数) 解题思路: 假定数字串长度是n,添完加号 ...

  2. OO第四次课程总结分析

    OO第四次课程总结分析 测试与正确性论证的效果差异及优缺点 测试,即使用测试样例来验证我们的程序是否能完成相应功能的过程.测试数据的产生基于前置条件和后置条件,通过执行测试数据检查方法输出是否满足需求 ...

  3. Cracking The Coding Interview 2.2

    #include <iostream> #include <string> using namespace std; class linklist { private: cla ...

  4. bootstrap 下拉选中查询

    <div class="form-group"> <label class="col-lg-3 col-sm-2 control-label" ...

  5. Tsi721信号及处理(转)

    reference: https://blog.csdn.net/shanghaiqianlun/article/details/50545581 1.      PCIe信号 名称 类型 描述 PC ...

  6. TransactionScop事务机制的使用

    如果在C#中使用TransactionScope类(分布式事务),则须注意如下事项:1.在项目中引用using System.Transactions命名空间(先要在添加net组件的引用); 2.具体 ...

  7. 关于 global nonlocal 用法

    # 1 关于 globals() locals() nolocl 还有内置函数的引用## 概念的解释# 命名空间# 1 局部命名空间:每一个函数都有自己的命名空间# 2 全局命名空间:写在函数外的变量 ...

  8. 七、在U-boot中让LCD显示图片

    1. 增加Nandflash读取代码 因为要显示图片,而图片明显是放在Nandflash中比较合适,因此需要有能够操作Nandflash的函数.在U-boot中已经有能操作Nandflash的函数了, ...

  9. jq动态添加onclick事件在谷歌中不起作用

    $("#oa-bed-rooType").append($('<option/>').val(0).text('请选择房间类型')); $('#oa-bed-roomT ...

  10. 团队-团队编程项目爬取豆瓣电影top250-代码设计规范

    1.类名使用首字母大写(骆驼命名法) 2.函数名应该为小写 3.用下划线开头定义私有的属性或方法 4.命名要使用有意义的,英文单词或词组 5.行尾不加分号 6.4个空格缩进代码 7.操作运算符注意优先 ...