bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)
bzoj 2111: [ZJOI2010]Perm 排列计数
1 ≤ N ≤ 10^6, P≤ 10^9
题意:求1~N的排列有多少种小根堆
1: #include<cstdio>
2: using namespace std;
3: const int N = 1e6+5;
4: typedef long long LL;
5: LL m, p, T, x, y, F[N];
6: LL n, size[N<<1];
7: LL f[N];
8: LL inv(LL t, LL p) {
9: return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p;
10: }
11: LL C(LL n, LL m){
12: if(n < m) return 0;
13: if(n < p && m < p)
14: return F[n] * 1ll * inv(F[n-m]%p, p) % p * inv(F[m]%p, p) % p;
15: return C(n/p, m/p) * C(n%p, m%p) %p;
16: }
17: int main(){
18: int i;
19: scanf("%d%lld", &n, &p);
20: F[0] = 1;
21: for(i = 1; i <= n&&i < p; i++) F[i] = F[i-1] * i %p;//阶乘预处理
22: for(i = n; i; i--) {
23: size[i] = size[i<<1] + size[i<<1|1] + 1;
24: f[i] = C(size[i]-1, size[i<<1])*((i<<1)>n?1:f[i<<1])%p*((i<<1|1)>n?1:f[i<<1|1])%p;
25: }
26: printf("%lld\n", f[1]);
27: }
bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)的更多相关文章
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
- 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...
- BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...
- bzoj 2111 [ZJOI2010]Perm 排列计数(DP+lucas定理)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2111 [题意] 给定n,问1..n的排列中有多少个可以构成小根堆. [思路] 设f[i ...
- bzoj 2111: [ZJOI2010]Perm 排列计数【树形dp+lucas】
是我想复杂了 首先发现大于关系构成了一棵二叉树的结构,于是树形dp 设f[i]为i点的方案数,si[i]为i点的子树大小,递推式是\( f[i]=f[i*2]*f[i*2+1]*C_{si[i]-1} ...
- bzoj 2111: [ZJOI2010]Perm 排列计数 Lucas
题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...
- bzoj 2111: [ZJOI2010]Perm 排列计数
神题... 扒自某神犇题解: http://blog.csdn.net/aarongzk/article/details/50655471 #include<bits/stdc++.h> ...
- 2111: [ZJOI2010]Perm 排列计数
2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...
- 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
[题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...
随机推荐
- .net core 部署到IIS上 HTTP Error 502.5 - ANCM Out-Of-Process Startup Failure
安装AspNetCoreModule托管模块后执行 1.net stop was /y 2.net start w3svc
- .net core 填坑记之二目录问题(获取当前目录、创建目录)
1.获取应用程序运行当前目录Directory.GetCurrentDirectory(). System.IO命名空间中存在Directory类,提供了获取应用程序运行当前目录的静态方法GetCur ...
- Linux pip 安装模块时,一直黄字错误:Could not find a version that satisfies the requirement
参考原文:https://blog.csdn.net/u012592062/article/details/51966649 这时我们用国内的镜像源来加速 pip install 包名-i http: ...
- Java 基础 内部类
Java 基础 内部类 内部类(嵌套类) nested class 目的为外围类enclosing class提供服务. 四种: 静态成员类 static member class 非静态成员类 no ...
- JBPM学习第3篇:10分钟熟悉JBPM工作台
1.打开:http://localhost:8080/jbpm-console 键入用户名和密码(krisv/krisv)登陆. 2.看视频: http://download.jboss.org/jb ...
- 深入浅出ConcurrentHashMap1.8
转载:https://www.jianshu.com/p/c0642afe03e0 好文 关于文章中的疑问:为什么要构造一个反序链表,放在nextTable的i+n的位置上呢,在<深入分析Con ...
- 洛谷P3952 时间复杂度(模拟)
题意 题目链接 Sol 咕了一年的题解..就是个模拟吧 考场上写的递归也是醉了... 感觉一年自己进步了不少啊..面向数据编程的能力提高了不少 #include<bits/stdc++.h> ...
- JS常见的几种数组去重方法
总结一下JS中用到的数组去重的方法 方法一: 该方法利用对象的属性值不能相同: function arrDelLikeElement (array) { const result = []; con ...
- replace的坑
问题:html中代码段包含了$,在使用replace替换时,$直接被替换了解决:先把文本中的$全部替换成自己定义的标签,最后在还原回去原因:在介绍replace的文档中,$&代表插入匹配的子串 ...
- php注册
<?php var_dump($_GET);//打印出对象的数据类型//链接数据库$link = @mysql_connect('localhost','root','root');#选择数据库 ...