~~~题面~~~

题解:

$ans = \sum_{x = 1}^{n}\sum_{y = 1}^{m}\sum_{i = 1}^{k}[gcd(x, y) == p_{i}]$其中k为质数个数
    $$ans = \sum_{i = 1}^{k}\sum_{x = 1}^{n}\sum_{y = 1}^{m}[gcd(x, y) == p_{i}]$$
    设$f(d)$表示$x$从$1$到$n$,$y$从$1$到$m$,$gcd == d$的个数,$g(d)$表示相同条件下$d | gcd$(即$gcd$为$d$的倍数)的个数
    那么$$f(d) = \sum_{x = 1}^{n}\sum_{y = 1}^{m}[gcd(x, y) == d]$$,$$g(d) = \lfloor{\frac{n}{d}}\rfloor\lfloor{\frac{m}{d}}\rfloor$$
    因为$$g(x) = \sum_{x|d}^{min(n, m)}f(d)$$
    所以反演一下。
    $$f(x) = \sum_{x | d}^{min(n, m)}\mu(\frac{d}{x})g(d)$$
    那么$ans = \sum_{i = 1}^{k}f(p_{i})$
    $$= \sum_{i = 1}^{k}\sum_{x | d}^{min(n, m)}\mu(\frac{d}{x})g(d)$$
    改成直接枚举系数
    $$= \sum_{i = 1}^{k}\sum_{d = 1}^{\lfloor{\frac{min(n, m)}{p_{i}}}\rfloor}\mu(d)g(dp_{i})$$
    $$= \sum_{i = 1}^{k}\sum_{d = 1}^{\lfloor{\frac{min(n, m)}{p_{i}}}\rfloor}\mu(d)\lfloor{\frac{n}{dp_{i}}\rfloor \lfloor{\frac{m}{dp_{i}}\rfloor}}$$<---枚举每个$\mu(d)分别被每个质数统计了几次$
    $$= \sum_{T = 1}^{min(n, m)} \lfloor{\frac{n}{T}}\rfloor \lfloor{\frac{m}{T}}\rfloor\sum_{k|T}{\mu(\frac{T}{k})}$$<---枚举每个$\lfloor{\frac{n}{T}}\rfloor \lfloor{\frac{m}{T}}\rfloor$会给哪些$\mu$做贡献(哪些$\mu$会在某次被统计$\lfloor{\frac{n}{T}}\rfloor \lfloor{\frac{m}{T}}\rfloor$次)
    然后暴力枚举质数和系数,给对应的$\mu$做贡献(质数$p_{i}$给它的倍数做贡献),统计前缀和,对前面的$\lfloor{\frac{n}{T}}\rfloor \lfloor{\frac{m}{T}}\rfloor$进行整数分块处理

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 10000100
#define LL long long
int n, m, tot, t;
int prime[AC], mu[AC];
LL s[AC], ans;
bool z[AC]; inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} void pre()
{
int now;
mu[] = ;
for(R i = ; i <= ; i++)
{
if(!z[i]) prime[++tot] = i, mu[i] = -;
for(R j = ; j <= tot; j++)
{
now = prime[j];
if(i * now > ) break;
z[i * now] = true;
if(!(i % now)) break;
mu[now * i] = -mu[i];
}
}
int p;
for(R i = ; i <= tot; i++)//枚举质数
{
p = prime[i];//卡常
for(R j = p; j <= ; j += p) //枚举倍数
s[j] += mu[j / p];//or j = 系数, s[j * prime[i]] += mu[j];
}
for(R i = ; i <= ; i++) s[i] += s[i - ];
} void work()
{
t = read();
while(t--)
{
int pos = ;
ans = ;
n = read(), m = read();
int b = min(n, m);//这里要取min!!!
for(R i = ; i <= b; i = pos + )
{
pos = min(n / (n / i), m / (m / i));
ans += (LL) (n / i) * (LL) (m / i) * (LL) (s[pos] - s[i - ]);//error 只有ans是LL是不够的
}
printf("%lld\n", ans);
}
} int main()
{
// freopen("in.in", "r", stdin);
//freopen("YYnoGCD.in", "r", stdin);
//freopen("YYnoGCD.out", "w", stdout);
pre();
work();
//fclose(stdin);
//fclose(stdout);
return ;
}

YY的GCD 莫比乌斯反演的更多相关文章

  1. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  2. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  3. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  4. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  5. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

  6. Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)

    2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

  7. 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)

    题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...

  8. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  9. 【BZOJ2820】YY的GCD [莫比乌斯反演]

    YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 求1<=x<=N, ...

  10. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

随机推荐

  1. leetcode笔记10 Intersection of Two Arrays(求交集)

    问题描述: Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, ...

  2. libevent学习六(Connect listeners )

      创建与释放 //backlog需要查询平台说明,在linux2.2以后 backlog就变成了已完成连接但未accept的队列的最大值(原来是处于syn状态的,现在换成sysctl 控制的参数tc ...

  3. Linux命令应用大词典-第19章 文件系统管理

    19.1 mkfs:创建Linux文件系统 19.2 mke2fs:创建ext2.3.4文件系统 19.3 mkfs.ext4:创建ext4文件系统 19.4 mkfs.ext3:创建ext3文件系统 ...

  4. Java开发工程师(Web方向) - 02.Servlet技术 - 第1章.Servlet

    第1章--Servlet Servlet简介 Servlet应用于? 浏览器发出HTTP请求,服务器接收请求后返回响应给浏览器. 接收请求后到返回响应之间: 服务器将请求对象转交给Servlet容器 ...

  5. 前端开发工程师 - 01.页面制作 - 第1章.Photoshop切图

    第1章--Photoshop切图 工具.面板.视图 什么是切图? 1. 从设计稿(.psd)中切出网络素材,如按钮.图标.logo.背景图等 2. 编写代码,在代码中使用图片,生成静态页面 --给网页 ...

  6. react和vue的区别

    1.数据改变的方式 react是通过setState来改变数据,然后重走组件的渲染过程.而vue是通过Object.defineProperty和watcher来显示响应式的数据,所以数据的改变是直接 ...

  7. LeetCode - 463. Island Perimeter - O(MN)- (C++) - 解题报告

    原题 原题链接 You are given a map in form of a two-dimensional integer grid where 1 represents land and 0 ...

  8. mweb test

    目录 Markdown syntax guide and writing on MWeb Philosophy Notice Headers This is an <h1> tag Thi ...

  9. POJ 2177 Ghost Busters(三维几何)

    Description The famous Ghost Busters team has decided to upgrade their Ectomobile (aka Ecto-1) with ...

  10. “Hello World!”团队召开的第十二次会议

    今天是我们团队“Hello World!”团队召开的第十二次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 一.会议时间 2 ...