【POJ3621】【洛谷2868】Sightseeing Cows(分数规划)

题面

Vjudge

洛谷

大意:

在有向图图中选出一个环,使得这个环的点权\(/\)边权最大

题解

分数规划

二分答案之后把每条边的边权换为\(mid·\)边权-出点的点权

然后检查有没有负环就行啦

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define ll long long
#define RG register
#define MAX 1111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,U[5555],V[5555],W[5555];
int a[MAX];
struct Line{int v,next;double w;}e[5555];
int h[MAX],cnt=1;
inline void Add(int u,int v,double w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
stack<int> S;
int ins[MAX];
double dis[MAX];
bool vis[MAX];
bool SPFA()
{
while(!S.empty())S.pop();
for(int i=1;i<=n;++i)vis[i]=true,ins[i]=1,S.push(i),dis[i]=0;
while(!S.empty())
{
int u=S.top();S.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[v]>dis[u]+e[i].w)
{
dis[v]=dis[u]+e[i].w;
if(!vis[v])S.push(v),vis[v]=true,++ins[v];
if(ins[v]>=n)return true;
}
}
vis[u]=false;
}
return false;
}
bool check(double mid)
{
for(int i=1;i<=n;++i)h[i]=0;cnt=1;
for(int i=1;i<=m;++i)Add(U[i],V[i],1.0*W[i]*mid-a[V[i]]);
if(SPFA())return true;
return false;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=m;++i)U[i]=read(),V[i]=read(),W[i]=read();
double l=0,r=1e6;
while(r-l>1e-3)
{
double mid=(l+r)/2;
if(check(mid))l=mid;
else r=mid;
}
printf("%.2f\n",l);
return 0;
}

【POJ3621】【洛谷2868】Sightseeing Cows(分数规划)的更多相关文章

  1. 【POJ3621】Sightseeing Cows 分数规划

    [POJ3621]Sightseeing Cows 题意:在给定的一个图上寻找一个环路,使得总欢乐值(经过的点权值之和)/ 总时间(经过的边权值之和)最大. 题解:显然是分数规划,二分答案ans,将每 ...

  2. 洛谷P1404 平均数 [01分数规划,二分答案]

    题目传送门 平均数 题目描述 给一个长度为n的数列,我们需要找出该数列的一个子串,使得子串平均数最大化,并且子串长度>=m. 输入输出格式 输入格式: N+1行, 第一行两个整数n和m 接下来n ...

  3. POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows

    一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...

  4. 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...

  5. 洛谷P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 151通过 203提交 题目提供者该用户不存在 标签USACO 难度普及- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 输入一个 ...

  6. 洛谷——P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...

  7. 洛谷 P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...

  8. 洛谷p1458顺序的分数题解

    抱歉,您们的蒟蒻yxj不知道怎么插入链接qwq就只好粘个文本的了qwq:https://www.luogu.org/problemnew/show/P1458 没错,是个黄题,因为你们的小蒟蒻只会这样 ...

  9. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)

    题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...

随机推荐

  1. C# 终本案件、综合执行人、裁判文书爬虫

    终本案件:http://zxgk.court.gov.cn/zhongben/new_index.html 综合执行人:http://zxgk.court.gov.cn/zhixing/new_ind ...

  2. (译)学习如何构建自动化、跨浏览器的JavaScript单元测试

    作者:Philip Walton 译者:Yeaseon 原文链接:点此查看 译文仅供个人学习,不用于任何形式商业目的,转载请注明原作者.文章来源.翻译作者及链接,版权归原文作者所有. ___ 我们都知 ...

  3. 分享开源的GB/T-2260国家行政区划代码

    项目中需要用到省市数据,在网上搜了一下,很多旧数据,稍微新一点的下载就要积分.X币什么的,很不爽,最后在GitHub上找到一个开源的,还有各种语言版本的,非常方便! https://github.co ...

  4. Windows运行机理——创建窗口

    Windows运行机理这系列文章都是来至于<零基础学Qt4编程>——吴迪,个人觉得写得很好,所以进行了搬运和个人加工 Windows 窗口在创建之前,其属性必须设定好,所谓属性包括类的名字 ...

  5. leetcode-组合总数III(回溯)

    组合总和 III 找出所有相加之和为 n 的 k 个数的组合.组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字. 说明: 所有数字都是正整数. 解集不能包含重复的组合.  示例 ...

  6. 基础的表ADT -数据结构(C语言实现)

    读数据结构与算法分析 表的概述 形如A1,A2,A3... 操作合集 PrintList MakeEmpty Find Insert Delete 表的简单数组实现 分析: PrintList和Fin ...

  7. KVM嵌套虚拟化

    1. 检查环境 $ grep -E 'svm|vmx' /proc/cpuinfo ~]#  lsmod | grep kvm kvm_intel             170181  0 kvm  ...

  8. Too many open files错误与解决方法

    致前辈:该问题的解决思路给了我很大的启发,文章作者Lis, Linux资深技术专家. 问题现象:这是一个基于Java的web应用系统,在后台添加数据时提示无法添加,于是登陆服务器查看Tomcat 日志 ...

  9. jQuery实现checkbox(复选框)选中、全选反选代码

    谁都知道 在html 如果一个复选框被选中 是 checked="checked". 但是我们如果用jquery alert($("#id").attr(&qu ...

  10. 一:yarn 介绍

        yarn的了出现主要是为了拆分jobtracker的两个核心功能:资源管理和任务监控,分别对应resouceManager(RM)和applicationManager(AM).yarn中的任 ...