【POJ3621】【洛谷2868】Sightseeing Cows(分数规划)
【POJ3621】【洛谷2868】Sightseeing Cows(分数规划)
题面
Vjudge
洛谷
大意:
在有向图图中选出一个环,使得这个环的点权\(/\)边权最大
题解
分数规划
二分答案之后把每条边的边权换为\(mid·\)边权-出点的点权
然后检查有没有负环就行啦
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define ll long long
#define RG register
#define MAX 1111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,U[5555],V[5555],W[5555];
int a[MAX];
struct Line{int v,next;double w;}e[5555];
int h[MAX],cnt=1;
inline void Add(int u,int v,double w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
stack<int> S;
int ins[MAX];
double dis[MAX];
bool vis[MAX];
bool SPFA()
{
while(!S.empty())S.pop();
for(int i=1;i<=n;++i)vis[i]=true,ins[i]=1,S.push(i),dis[i]=0;
while(!S.empty())
{
int u=S.top();S.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[v]>dis[u]+e[i].w)
{
dis[v]=dis[u]+e[i].w;
if(!vis[v])S.push(v),vis[v]=true,++ins[v];
if(ins[v]>=n)return true;
}
}
vis[u]=false;
}
return false;
}
bool check(double mid)
{
for(int i=1;i<=n;++i)h[i]=0;cnt=1;
for(int i=1;i<=m;++i)Add(U[i],V[i],1.0*W[i]*mid-a[V[i]]);
if(SPFA())return true;
return false;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=m;++i)U[i]=read(),V[i]=read(),W[i]=read();
double l=0,r=1e6;
while(r-l>1e-3)
{
double mid=(l+r)/2;
if(check(mid))l=mid;
else r=mid;
}
printf("%.2f\n",l);
return 0;
}
【POJ3621】【洛谷2868】Sightseeing Cows(分数规划)的更多相关文章
- 【POJ3621】Sightseeing Cows 分数规划
[POJ3621]Sightseeing Cows 题意:在给定的一个图上寻找一个环路,使得总欢乐值(经过的点权值之和)/ 总时间(经过的边权值之和)最大. 题解:显然是分数规划,二分答案ans,将每 ...
- 洛谷P1404 平均数 [01分数规划,二分答案]
题目传送门 平均数 题目描述 给一个长度为n的数列,我们需要找出该数列的一个子串,使得子串平均数最大化,并且子串长度>=m. 输入输出格式 输入格式: N+1行, 第一行两个整数n和m 接下来n ...
- POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows
一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...
- 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows
题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...
- 洛谷P1458 顺序的分数 Ordered Fractions
P1458 顺序的分数 Ordered Fractions 151通过 203提交 题目提供者该用户不存在 标签USACO 难度普及- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 输入一个 ...
- 洛谷——P1458 顺序的分数 Ordered Fractions
P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...
- 洛谷 P1458 顺序的分数 Ordered Fractions
P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...
- 洛谷p1458顺序的分数题解
抱歉,您们的蒟蒻yxj不知道怎么插入链接qwq就只好粘个文本的了qwq:https://www.luogu.org/problemnew/show/P1458 没错,是个黄题,因为你们的小蒟蒻只会这样 ...
- 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)
题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...
随机推荐
- 6.2 element和elements
为什么这个要单独拿出来说,因为我在很多群里面看见很多人不能区分这个! 因为之前的包有点问题,另外后续还会更换app,因为部分app可能没有符合的案例场景,我需要找到那个场景给大家做个实例..便于大家跟 ...
- python学习笔记02 --------------基础数据类型
python的基本数据类型: 1.基本数据 1.1. 数字类型 1.1.1 整数 int int() #将括号内内容转化为整数类型. 1.1.2 浮点数 float 1.1.3 复 ...
- Android开发-API指南-<permission-tree>
<permission-tree> 英文原文:http://developer.android.com/guide/topics/manifest/permission-tree-elem ...
- 20172332 实验一《Java开发环境的熟悉》实验报告
20172332 2017-2018-2 <程序设计与数据结构>实验一报告 课程:<程序设计与数据结构> 班级: 1723 姓名: 于欣月 学号:20172332 实验教师:王 ...
- Huffuman树
问题描述 Huffman树在编码中有着广泛的应用.在这里,我们只关心Huffman树的构造过程. 给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下: 1. ...
- 2019寒假训练营寒假作业(三) MOOC的网络空间安全概论笔记部分
目录 第五章 网络攻防技术 5.1:网络信息收集技术--网络踩点 信息收集的必要性及内容 网络信息收集技术 网络踩点(Footprinting) 网络踩点常用手段 5.2:网络信息收集技术 --网络扫 ...
- HashMap get()返回值问题
问题描述:在进行mysql查询必要字段后,需要根据id进行es其它数据字段的查询拼接.使用HashMap以id为key 以查询过来的数据值为value. 代码如下: Map<String,Int ...
- lintcode-196-寻找缺失的数
196-寻找缺失的数 给出一个包含 0 .. N 中 N 个数的序列,找出0 .. N 中没有出现在序列中的那个数. 样例 N = 4 且序列为 [0, 1, 3] 时,缺失的数为2. 挑战 在数组上 ...
- 利用SqlServer的作业定时清除过期数据
有时候我们的数据库中可能会有那么些存放动态数据的表,比如一些每天定时发出的消息通知信息等数据.这些数据我们只需要临时保存,一些老旧的数据需要定时去清除掉,不然时间一长的话单表数据堆积非常严重.导致数据 ...
- 【Docker 命令】- pause/unpause 命令
docker pause :暂停容器中所有的进程. docker unpause:恢复容器中所有的进程. 语法 docker pause [OPTIONS] CONTAINER [CONTAINER. ...