题目大意:求$a^b\bmod m(a\leqslant10^9,m\leqslant10^6,b\leqslant10^{2\times10^7})$

题解:扩展欧拉定理:
$$
a^b\equiv
\begin{cases}
a^{b\bmod{\varphi(p)}} &(a,b)=1\\
a^b &(a,b)\not=1,b<\varphi(p)\\
a^{b\bmod{\varphi(p)}+\varphi(p)} &(a,p)\not=1,b\geqslant\varphi(p)
\end{cases}
\pmod{p}
$$
可以求出$\varphi(m)$,然后快速幂即可

卡点:

C++ Code:

#include <cstdio>
#include <cmath>
#include <cctype>
int a, mod, phi, b;
namespace Math {
int Phi(int n) {
int t = std::sqrt(n), res = n;
for (int i = 2; i <= t; i++) if (n % i == 0) {
res = res / i * (i - 1);
while (n % i == 0) n /= i;
}
if (n > 1) res = res / n * (n - 1);
return res;
}
inline int pw(int base, int p) {
int res = 1;
for (; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
return res;
}
} int read() {
int ch, x, c = 0;
while (isspace(ch = getchar()));
for (x = ch & 15; isdigit(ch = getchar()); ) {
x = x * 10 + (ch & 15);
if (x >= phi) x %= phi, c = phi;
}
return x + c;
}
int main() {
scanf("%d%d", &a, &mod);
phi = Math::Phi(mod);
b = read();
printf("%d\n", Math::pw(a, b));
return 0;
}

  

[洛谷P5091]【模板】欧拉定理的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  3. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  4. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  5. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  6. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  7. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  8. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  9. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

  10. [洛谷P3806] [模板] 点分治1

    洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...

随机推荐

  1. PS 旋转任意角度的照片

    1.选择标尺工具 2.在图片上画一个线,然后工具栏--图像--图像旋转

  2. CSS随笔3

    1. CSS部分简洁使用 * background-radious:使得边框角“圆化”. * background:pink  url(“图片路径”)  no-repeat: * border 可以有 ...

  3. Android Test和Logcat

    一 测试相关概念 是否有源码 黑盒测试: 测试工具 白盒测试: 对所有的源码特别熟悉 对特定的代码进行测试 都是编程 时间 单元测试(程序员) 模块测试 集成测试 系统测试 回归测试(改bug) 压力 ...

  4. leetcode-帕斯卡三角形

    帕斯卡三角形 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行. 示例: 输入: 5 输出: [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4 ...

  5. [HNOI2018]转盘

    [HNOI2018]转盘 给你一个 \(n\) 元环, 你可以在 \(0\) 时刻从任意一个位置出发, 每一秒可以选择往后或者留在原地每个点有个参数 \(T_i\) , 当你走到 \(i\) 的时间 ...

  6. DeepLearning Intro - sigmoid and shallow NN

    This is a series of Machine Learning summary note. I will combine the deep learning book with the de ...

  7. 如何在etherscan提交代币官方信息

    https://ethlinkersupport.zendesk.com/hc/zh-cn/articles/360001334992-%E5%A6%82%E4%BD%95%E5%9C%A8ether ...

  8. array.some() 方法兼容ie8

    在第 5 版时,some 被添加进 ECMA-262 标准:这样导致某些实现环境可能不支持它.你可以把下面的代码插入到脚本的开头来解决此问题,从而允许在那些没有原生支持它的实现环境中使用它.该算法是  ...

  9. Discover the Web(栈模拟)

    Description Standard web browsers contain features to move backward and forward among the pages rece ...

  10. iOS- NSThread/NSOperation/GCD 三种多线程技术的对比及实现

    1.iOS的三种多线程技术 1.NSThread 每个NSThread对象对应一个线程,量级较轻(真正的多线程) 2.以下两点是苹果专门开发的“并发”技术,使得程序员可以不再去关心线程的具体使用问题 ...