推荐系统(Recommender System)

案例

  • 为用户推荐电影

数据展示

Bob Tom Alice Jack 动作成分 浪漫成分
Movie1 5 ? 0 3 ? ?
Movie2 ? 0 3 ? ? ?
Movie3 0 1 0 5 ? ?
Movie4 ? 4 1 0 ? ?

算法

  • 协同过滤算法(Collaborative filter learning algorithm)

记号

  • \(n_m\): 数据中电影的数量, 其中n表示number, m表示movie
  • \(n_u\): 数据中用户的数量, 其中n表示number, u表示user
  • \(i\): 表示第i部电影
  • \(j\): 表示第j位用户
  • \(y^{(i, j)}\): 第j位用户对第i部电影的评分, 我们发现在原始数据中有?, 表示用户没有看过, 不能评分, 这里对应的\(y^{(i, j)}\)为0, \(y^{(i, j)}\)需要配合下一个\(r\)记号
  • \(r^{(i, j)}\): 第j位用户是否看过第i部电影, 如果看过则为1, 没有则为0, 其中r表示rate
  • \(x^{(i)}\): 第i部电影的特征向量
  • \(\theta^{(j)}\): 第j位用户的权重
  • \(x_k^{(i)}\): 第i部电影的第k个特征向量
  • \((i,j):r(i,j)=1\), 表示取使得\(r(i,j)=1\)的\((i,j)\)

步骤

  • 对每一部电影的评分进行去中心化, 得到去中心化的数据以及均值, 在去中心化的过程中忽略评分为?的数据
  • 随机初始化\(X\)与\(\Theta\)
  • 计算损失函数$$J(x^{(i)}, ..., x{(n_m)},\theta{(j)}, ..., \theta{(n_u)})={1\over{2m}}\sum_{(i,j):r(i,j)=1}((\theta{(i)})Tx{(i)}-y{(i,j)})2+{\lambda\over2}\sum_{i=1}{n_m}\sum_{k=1}n(x_k{(i)})2+{\lambda\over{2}}\sum_{j=1}{n_u}\sum_{k=1}{n}(\theta_k{(j)})2$$
  • 求解$$min_{x^{(i)}, ..., x{(n_m)},\theta{(j)}, ..., \theta{(n_u)}}J(x{(i)}, ..., x{(n_m)},\theta{(j)}, ..., \theta^{(n_u)})$$
  • 梯度
    • \[x_k^{(i)}:=x_k^{(i)}-\alpha(\sum_{j:r(i,j)=1}((\theta^{(j)})^T)-y^{(i,j)})\theta_k^{(i,j)}+\lambda x_k^{(i)})
      \]

    • \[\theta_k^{(j)}:=\theta_k^{(j)}-\alpha(\sum_{i:r(i,j)=1}((\theta^{(i)})^T-y^{(i,j)})x_k^{i}+\lambda \theta_k^{(j)})
      \]

Matlab实现CostFunction关键部分

%此处, 虽然有一些用户没有对一些电影做出评价, 但是Y仍然为0, 在下一个J的赋值语句中, 通过R计算出符合要求的J
J = (X * Theta' - Y) .^ 2; J = (1 / 2) * sum(sum(J .* R)) + (lambda / 2) * sum(sum(X .^ 2)) + (lambda / 2) * sum(sum(Theta .^ 2)); X_grad = ((X * Theta' - Y) .* R) * Theta + lambda * X;
Theta_grad = ((X * Theta' - Y) .* R)' * X + lambda * Theta;

推荐系统(Recommender System)的更多相关文章

  1. 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角

    [论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys  ...

  2. A cost-effective recommender system for taxi drivers

    一个针对出租车司机有效花费的推荐系统 摘要 GPS技术和新形式的城市地理学改变了手机服务的形式.比如说,丰富的出租车GPS轨迹使得出做租车领域有新方法.事实上,最近很多工作是在使用出租车GPS轨迹数据 ...

  3. 海量数据挖掘MMDS week4: 推荐系统Recommendation System

    http://blog.csdn.net/pipisorry/article/details/49205589 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  4. 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives

    (聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...

  5. Coursera, Machine Learning, Anomoly Detection & Recommender system

      Algorithm:     When to select Anonaly detection or Supervised learning? 总的来说guideline是如果positive e ...

  6. [C11] 推荐系统(Recommender Systems)

    推荐系统(Recommender Systems) 问题阐述(Problem Formulation) 将 推荐系统 纳入这门课程来讲有以下两个原因: 第一.仅仅因为它是机器学习中的一个重要的应用.在 ...

  7. User-Based Collaborative Recommender System

    Collaborative Recommender System基于User给Item的打分表,认为相似度很高的用户,会对同一个item给出相似的分数,找出K个相似度最高的用户,集合他们的打分,来推算 ...

  8. Item-Based Collaborative Recommender System

    与User-Based Collaborative Recommender System认为‘类似的用户会对同一个item给出类似的打分’不同,Item-Based Collaborative Rec ...

  9. Content-Based Recommender System

    Content-Based Recommender System是基于产品(商品.网页)的内容.属性.关键字,以及目标用户的喜好.行为,这两部分数据来联合计算出,该为目标用户推荐其可能最感兴趣的产品. ...

随机推荐

  1. [LeetCode 题解]: Two Sum

    前言   [LeetCode 题解]系列传送门:  http://www.cnblogs.com/double-win/category/573499.html   1.题目描述 Given an a ...

  2. Intel Galileo Debian Image Prequits

    Intel Galileo开发板 Debian镜像 在原发布者的基础上进行了更新,附带开发入门套件,打包内容: -intel_galileo_debian_xfce4镜像 -约3GB -putty - ...

  3. Replication--复制笔记1

    1.快照复制和事务复制使用分发代理传递文件,而合并复制使用合并代理来传递文件2.快照代理在分发服务器上运行3.在创建快照是,根据复制的类型对发布表的加锁方式而不同    a)对应合并发布,快照代理不适 ...

  4. C#设计模式--工厂模式和抽象工厂模式

    话说有三大潮牌公司一直相互PK,有一天举办了一个活动让这三大公司来一个PK,我们来看看哪家公司的上衣做出来好看穿得舒服 现在我们有一个上衣的抽象产品让三大公司来做 //抽象产品 public inte ...

  5. MySQL数据库(四)

    操作数据库表的内容: -- 向表中插入数据:insert into table_name values(now(),'a'); insert into student (id,name,sex) va ...

  6. docker : RabbitMQ ElasticSearch

    docker  运行RabbitMQ容器 docker run -d -p 5672:5672 -p 15672:15672 --name 命名 CONTAINER ID 放出5672  /  156 ...

  7. Elasticsearch学习(3) spring boot整合Elasticsearch的原生方式

    前面我们已经介绍了spring boot整合Elasticsearch的jpa方式,这种方式虽然简便,但是依旧无法解决我们较为复杂的业务,所以原生的实现方式学习能够解决这些问题,而原生的学习方式也是E ...

  8. 贪心——Prim算法(避圈法)

    1.简介 Prim算法是图论中的一种算法,可在带权连通图里搜索产生最小生成树. 该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗 ...

  9. “全栈2019”Java第六十九章:内部类访问外部类成员详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  10. 剑指offer面试题1---赋值运算符函数

    题目描述:如下类型CMyString的声明,请为该类型添加赋值运算符函数. class CMyString{public:    CMyString(char* pData = NULL);    C ...