[WikiOI "天梯"1281] Xn数列
题目描述Description
给你6个数,m, a, c, x0, n, g
Xn+1 = ( aXn + c ) mod m,求Xn
m, a, c, x0, n, g<=10^18
输入描述Input Description
一行六个数 m, a, c, x0, n, g
输出描述Output Description
输出一个数 Xn mod g
样例输入Sample Input
11 8 7 1 5 3
样例输出Sample Output
2
数据范围及提示Data Size & Hint
int64按位相乘可以不要用高精度。
题目分析
典型的矩阵快速幂问题。由递推式 Xn+1 = ( aXn + c ) mod m 可以构造出矩阵方程:
那么题目所求就可转化为一个1*2矩阵与n个二阶方阵的矩阵链乘。根据矩阵乘法的结合律,可得出:

即可转化为矩阵快速幂问题。其中的乘法运算已改为了倍增取模乘法。
1 //WikiOI 1281 Xn数列
2 #include <iostream>
3 using namespace std;
4 typedef long long LL;
5 LL m, a, c, x0, n, MOD;
6 LL mlti(LL a, LL b) //倍增取模乘法
7 {
8 a %= m;
9 LL ans = ;
while(b)
{
if(b & )ans = (ans + a)% m;
a = (a << )% m;
b >>= ;
}
return ans;
}
struct Matrix2
{
LL val[][];
Matrix2(LL k1,LL k2,LL k3,LL k4)
{
val[][] = k1; val[][] = k2; val[][] = k3; val[][] = k4;
}
void Mlti(Matrix2 &m) //矩阵乘法
{
LL v1 = mlti(val[][],m.val[][])+mlti(val[][],m.val[][]);
LL v2 = mlti(val[][],m.val[][])+mlti(val[][],m.val[][]);
LL v3 = mlti(val[][],m.val[][])+mlti(val[][],m.val[][]);
LL v4 = mlti(val[][],m.val[][])+mlti(val[][],m.val[][]);
val[][] = v1,val[][] = v2,val[][] = v3,val[][] = v4;
}
};
int main()
{
ios::sync_with_stdio(); //感谢陈思学长!
cin >>m >>a >>c >>x0 >>n >>MOD;
Matrix2 M(a, , , );
Matrix2 ans = M;
n -= ;
while(n)
{
if(n & ) ans.Mlti(M);
M.Mlti(M);
n >>=;
}
cout << ((mlti(x0, ans.val[][])+mlti(c, ans.val[][]))%m)%MOD;
return ;
}
那么题目所求就可转化为一个1*2矩阵与n个二阶方阵的矩阵链乘。根据矩阵乘法的结合律,可得出:

即可转化为矩阵快速幂问题。其中的乘法运算已改为了倍增取模乘法。

1 //WikiOI 1281 Xn数列
2 #include <iostream>
3 using namespace std;
4 typedef long long LL;
5 LL m, a, c, x0, n, MOD;
6 LL mlti(LL a, LL b) //倍增取模乘法
7 {
8 a %= m;
9 LL ans = ;
while(b)
{
if(b & )ans = (ans + a)% m;
a = (a << )% m;
b >>= ;
}
return ans;
}
struct Matrix2
{
LL val[][];
Matrix2(LL k1,LL k2,LL k3,LL k4)
{
val[][] = k1; val[][] = k2; val[][] = k3; val[][] = k4;
}
void Mlti(Matrix2 &m) //矩阵乘法
{
LL v1 = mlti(val[][],m.val[][])+mlti(val[][],m.val[][]);
LL v2 = mlti(val[][],m.val[][])+mlti(val[][],m.val[][]);
LL v3 = mlti(val[][],m.val[][])+mlti(val[][],m.val[][]);
LL v4 = mlti(val[][],m.val[][])+mlti(val[][],m.val[][]);
val[][] = v1,val[][] = v2,val[][] = v3,val[][] = v4;
}
};
int main()
{
ios::sync_with_stdio(); //感谢陈思学长!
cin >>m >>a >>c >>x0 >>n >>MOD;
Matrix2 M(a, , , );
Matrix2 ans = M;
n -= ;
while(n)
{
if(n & ) ans.Mlti(M);
M.Mlti(M);
n >>=;
}
cout << ((mlti(x0, ans.val[][])+mlti(c, ans.val[][]))%m)%MOD;
return ;
}
[WikiOI "天梯"1281] Xn数列的更多相关文章
- 【wikioi】1281 Xn数列(矩阵乘法)
http://wikioi.com/problem/1281/ 矩阵真是个神奇的东西.. 只要搞出一个矩阵乘法,那么递推式可以完美的用上快速幂,然后使复杂度降到log 真是神奇. 在本题中,应该很快能 ...
- Codevs No.1281 Xn数列
2016-06-01 16:28:25 题目链接: Xn数列 (Codevs No.1281) 题目大意: 给定一种递推式为 Xn=(A*Xn-1+C)%M 的数列,求特定的某一项%G 解法: 矩阵乘 ...
- codevs 1281 Xn数列
题目描述 Description 给你6个数,m, a, c, x0, n, g Xn+1 = ( aXn + c ) mod m,求Xn m, a, c, x0, n, g<=10^18 输入 ...
- 【CODEVS】1281 Xn数列
[算法]矩阵快速幂 [题解]T*A(n-1)=A(n)矩阵如下: a 1 * x(n-1) 0 = xn 0 0 1 c 0 c 0 防止溢出可以用类似快速幂的快速乘. ...
- codevs 1281 Xn数列 (矩阵乘法)
/* 再来个题练练手 scanf longlong 有bug....... */ #include<cstdio> #include<iostream> #include< ...
- C++之路进阶——codevs1281(Xn数列)
1281 Xn数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你6个数,m, a, c, x0, n, ...
- Xn数列(codevs 1281)
题目描述 Description 给你6个数,m, a, c, x0, n, g Xn+1 = ( aXn + c ) mod m,求Xn m, a, c, x0, n, g<=10^18 输入 ...
- 【wikioi】1250 Fibonacci数列(矩阵乘法)
http://wikioi.com/problem/1250/ 我就不说这题有多水了. 0 1 1 1 矩阵快速幂 #include <cstdio> #include <cstri ...
- codevs1281 Xn数列
题目描述 Description 给你6个数,m, a, c, x0, n, g Xn+1 = ( aXn + c ) mod m,求Xn m, a, c, x0, n, g<=10^18 输入 ...
随机推荐
- 纠结于arch+xfce还是xubuntu
现在用的是ubuntu gnome版 http://www.tuicool.com/articles/6r22eyU 现在纠结于arch+xfce还是xubuntu,因为不想在gnome下面搞什么美化 ...
- vue路由-动态路由和嵌套路由
一.动态路由 我们经常需要把某种模式匹配到的所有路由,全都映射到同个组件.例如,我们有一个 User 组件,对于所有 ID 各不相同的用户,都要使用这个组件来渲染.那么,我们可以在 vue-route ...
- linux中断系统那些事之----中断处理过程【转】
转自:http://blog.csdn.net/xiaojsj111/article/details/14129661 以外部中断irq为例来说明,当外部硬件产生中断时,linux的处理过程.首先先说 ...
- 64_a2
arquillian-core-parent-1.1.11-6.fc26.noarch.rpm 10-Feb-2017 13:22 12918 arquillian-core-spi-1.1.11-6 ...
- iptables 操作
iptables --list 查看列表 iptables删除规则 iptables -nL --line-number Chain INPUT (policy ACCEPT)num target p ...
- JQuery实现AJAX实例
<script type="text/javascript" src="ReportServer?op=emb&resource=finereport.js ...
- Linux 各个版本之间的差别
一直没有搞清楚RHEL,CentOS,,还有Ubuntu,fedora这些版本之间的差别,搜了一下,整理到这里,备忘吧. 我最关心的: 1, CentOS是在RHEL基础上的免费版: 2, Ubunt ...
- 关于指针pointer的位数与程序有关还是与系统有关、以及指针的指针的理解
- www.verycd.com
#encoding=utf-8 import urllib import urllib2 postdate = urllib.urlencode({'continueURL':'http://www. ...
- Distinct Subsequences ——动态规划
Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...