题目描述

给定有向图 G=(V,E) G = (V, E)G=(V,E)。设 P PP 是 G GG 的一个简单路(顶点不相交)的集合。如果 V VV 中每个顶点恰好在 P PP 的一条路上,则称 P PP 是 G GG 的一个路径覆盖。P PP 中路径可以从 V VV的任何一个顶点开始,长度也是任意的,特别地,可以为 0 00。G GG 的最小路径覆盖是 G GG 的所含路径条数最少的路径覆盖。

设计一个有效算法求一个有向无环图 G GG 的最小路径覆盖。

输入格式

第 1 11 行有 2 22 个正整数 n nn 和 m mm。n nn 是给定有向无环图 G GG 的顶点数,m mm 是 G GG 的边数。
接下来的 m mm 行,每行有 2 22 个正整数 u uu 和 v vv,表示一条有向边 (i,j) (i, j)(i,j)。

输出格式

从第 1 11 行开始,每行输出一条路径。
文件的最后一行是最少路径数。

样例

样例输入

11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11

样例输出

1 4 7 10 11
2 5 8
3 6 9
3

数据范围与提示

1≤n≤200,1≤m≤6000 1 \leq n \leq 200, 1 \leq m \leq 60001≤n≤200,1≤m≤6000

最小割 最大流

//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=400+10,maxm=6010+maxn;
int n,m,k,S,T,tot,ans,rb[maxn],rd[maxn];
bool pl[maxn];int v[maxn]; int aa;char cc;
int read() {
aa=0;cc=getchar();
while(cc<'0'||cc>'9') cc=getchar();
while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar();
return aa;
} struct Node{
int x,y,cap,flow;
}node[2*maxm]; int cur[maxn];
int fir[maxn],nxt[2*maxm],e=1;
void add(int x,int y,int z) {
node[++e].x=x;node[e].y=y;node[e].cap=z; nxt[e]=fir[x];fir[x]=e;
node[++e].x=y;node[e].y=x;node[e].cap=0; nxt[e]=fir[y];fir[y]=e;
} int zz[maxn],dis[maxn],s=1,t=0;
bool BFS() {
memset(dis,-1,sizeof(dis));
dis[S]=0; s=1,t=0;zz[++t]=S;
int x,y;
while(s<=t) {
x=zz[s];s++;
for(y=fir[x];y;y=nxt[y]) {
if(node[y].flow>=node[y].cap||dis[node[y].y]!=-1) continue;
dis[node[y].y]=dis[x]+1;
zz[++t]=node[y].y;
}
}
return dis[T]!=-1;
} int DFS(int pos,int maxf) {
if(pos==T||!maxf) return maxf;
int rs=0,now;
for(int &y=cur[pos];y;y=nxt[y]) {
if(node[y].flow>=node[y].cap||dis[node[y].y]!=dis[node[y].x]+1) continue;
now=DFS(node[y].y,min(maxf,node[y].cap-node[y].flow));
node[y].flow+=now;
node[y^1].flow-=now;
rs+=now;
maxf-=now;
}
if(!rs) dis[pos]=-1;
return rs;
} int Dinic() {
int rs=0;
while(BFS()) {
memcpy(cur,fir,sizeof(fir));
rs+=DFS(S,0x3f3f3f3f);
}
return rs;
} int main() {
n=read();m=read();tot=n;
int x,y; S=2*n+1;T=S+1;
for(int i=1;i<=n;++i) add(S,i,1),add(i+n,T,1);
for(int i=1;i<=m;++i) {
x=read();y=read();
add(x,y+n,1);
}
ans=tot-Dinic();
for(int i=2;i<=e;++i) {
if(node[i].x<=n&&node[i].flow==1) {
rb[node[i].x]=node[i].y-n;
rd[node[i].y-n]=1;
}
}
for(int i=1;i<=n;++i) if(!rd[i]){
x=i;printf("%d",i);
while(rb[x]) printf(" %d",x=rb[x]);
printf("\n");
}
printf("%d",ans);
return 0;
}

  

网络流24题 最小路径覆盖(DCOJ8002)的更多相关文章

  1. Cogs 728. [网络流24题] 最小路径覆盖问题

    [网络流24题] 最小路径覆盖问题 ★★☆ 输入文件:path3.in 输出文件:path3.out 评测插件 时间限制:1 s 内存限制:128 MB 算法实现题8-3 最小路径覆盖问题(习题8-1 ...

  2. cogs 728. [网络流24题] 最小路径覆盖问题 匈牙利算法

    728. [网络流24题] 最小路径覆盖问题 ★★★☆   输入文件:path3.in   输出文件:path3.out   评测插件时间限制:1 s   内存限制:128 MB 算法实现题8-3 最 ...

  3. COGS728. [网络流24题] 最小路径覆盖问题

    算法实现题8-3 最小路径覆盖问题(习题8-13) ´问题描述: 给定有向图G=(V,E).设P是G的一个简单路(顶点不相交)的集合.如果V中每个顶点恰好在P的一条路上,则称P是G的一个路径覆盖.P中 ...

  4. P2764 [网络流24题]最小路径覆盖问题[最大流]

    地址 这题有个转化,求最少的链覆盖→即求最少联通块. 设联通块个数$x$个,选的边数$y$,点数$n$个 那么有 $y=n-x$   即  $x=n-y$ 而n是不变的,目标就是在保证每个点入度.出度 ...

  5. 【wikioi】1904 最小路径覆盖问题(最大流+坑人的题+最小路径覆盖)

    http://wikioi.com/problem/1904/ 这题没看数据的话是一个大坑(我已报告官方修复了),答案只要求数量,不用打印路径...orz 最小路径覆盖=n-最大匹配,这个我在说二分图 ...

  6. 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】

    P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...

  7. LOJ6002 - 「网络流 24 题」最小路径覆盖

    原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...

  8. LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖

    6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

  9. LibreOJ #6002. 「网络流 24 题」最小路径覆盖

    #6002. 「网络流 24 题」最小路径覆盖 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测 ...

随机推荐

  1. 事务一致性理解 事务ACID特性的完全解答

    A  原子性 事务管理者多个小操作,他们同时完成或者同时不完成就是原子性 C 一致性 一致性,是一个很相对的,很主观的概念, 一致性 描述的是 事务 从一个一致的状态变成 另一个一致的状态. 一致性需 ...

  2. 如何让 J2Cache 在多种编程语言环境中使用

    现在的系统是越来越复杂了,不仅仅是功能复杂,系统结构也非常复杂,而且经常在一个系统里包含几种不同语言编写的子系统.例如用 JavaScript 做前端开发.用 Java/PHP 等等做后端,C/C++ ...

  3. css 始终显示滚动条,内容超出显示有滑块的滚动条,内容没有超出显示空的滚动条

    1.内容没有超出显示空的滚动条 <div class="div1"> 前端开发者前端开发者前端开发者前端开发者前端开发者 </div> css代码: .di ...

  4. Luogu P3459 [POI2007]MEG-Megalopolis(线段树)

    P3459 [POI2007]MEG-Megalopolis 题意 题目描述 Byteotia has been eventually touched by globalisation, and so ...

  5. Luogu P3960 列队(动态开点线段树)

    P3960 列队 题意 题目描述 Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia所在的方阵中有\(n \times m ...

  6. goland快捷键使用

    查找替换: 格式化代码块:ctrl+alt+L将选中的行自动对齐:ctrl+alt+I优化没必要的imports:ctrl+alt+O展开代码块:ctrl+“+”展开文件中所有代码块:ctrl+shi ...

  7. switch...case...之替换方案一

    很多时候,当switch中有N个分支,且分支数已达10+,每个分支都是一个不小的方法体,那我们是不是应该考虑换一种方式来实现这个分支. 而我目前所能想到的是会用到如下几种方法. 1.Action 2. ...

  8. VS2013 IIS Express8.0

    1.下载最新版本的 Microsoft Web Platform Installer 5.0. 2.在组件列表中选择最新版本的 WebMatrix 3.0,安装重启后即可正常使用 IIS Expres ...

  9. LA4254 Processor

      题意:有n个任务,每个任务有三个参数ri,di和wi,表示必须在时刻[ri,di]之内执行,工作量为wi.处理器执行速度可以变化,当执行速度为s时,工作量为wi.处理器的速度可以变化,当执行速度为 ...

  10. ACdream 1112

    题目链接 Alice and Bob Time Limit: 6000/3000MS (Java/Others)Memory Limit: 256000/128000KB (Java/Others) ...