hdu6088 组合数+反演+拆系数fft
题意:两个人van石头剪子布的游戏一共n盘,假设A赢了a盘,B赢了b盘,那么得分是gcd(a,b),求得分的期望*\(3^{2*n}\)
题解:根据题意很明显有\(ans=3^{n}*\sum_{a=0}^{n}\sum_{b=0}^{n-a}gcd(a,b)C(n,a)C(n-a,b)\)
\(ans=\sum_{d=1}^nd\sum_{a=0}^n\sum_{b=0}^{n-a}[gcd(a,b)==d]C(n,a)C(n-a,b)\)
假设\(f(d)=\sum_{a=0}^n\sum_{b=0}^{n-a}[gcd(a,b)==d]C(n,a)C(n-a,b)\),\(F(d)=\sum_{a=0}^n\sum_{b=0}^{n-a}[d|gcd(a,b)]C(n,a)C(n-a,b)\),
那么\(F(d)=\sum_{d|x}f(x)\),\(f(d)=\sum_{d|x}\mu(\frac{x}{d})F(x)\).
\(ans=3^{n}\sum_{d=1}^nd\sum_{d|x}\mu(\frac{x}{d})F(x)\)
\(ans=3^{n}\sum_{x=1}^nF(x)\sum_{d|x}d\mu(\frac{x}{d})\)
\(ans=3^{n}\sum_{x=1}^nF(x)\phi(x)\)
\(F(d)=\sum_{a=0}^n\sum_{b=0}^{n-a}[d|gcd(a,b)]C(n,a)C(n-a,b)\)
\(F(d)=\sum_{a=0}^{\frac{n}{d}}\sum_{b=0}^{\frac{n}{d}-a}C(n,a*d)C(n-a*d,b*d)-1\)
\(F(d)=\sum_{a=0}^{\frac{n}{d}}\sum_{b=0}^{\frac{n}{d}-a}C(n,a*d+b*d)*C(a*d+b*d,b*d)-1\)
\(F(d)=\sum_{a=0}^{\frac{n}{d}}\sum_{b=0}^{a}C(n,a*d)C(a*d,b*d)-1\)
\(F(d)=n!\sum_{a=0}^{\frac{n}{d}}\frac{1}{(n-a*d)!}\sum_{b=0}^{i}\frac{1}{(j*d)!}*\frac{1}{(i*d-j*d)!}\)
后面的求和用拆系数fft即可处理,枚举d计算F(d),复杂度\(\sum_{d=1}^n\frac{n}{d}log(\frac{n}{d})\)
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
//#include <bits/extc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define mt make_tuple
//#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define sqr(x) ((x)*(x))
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
#define bpc __builtin_popcount
#define base 1000000000000000000ll
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
#define mr mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
//using namespace __gnu_pbds;
const ld pi=acos(-1);
const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=100000+10,maxn=2000000+10,inf=0x3f3f3f3f;
struct cd{
ld x,y;
cd(ld _x=0.0,ld _y=0.0):x(_x),y(_y){}
cd operator +(const cd &b)const{
return cd(x+b.x,y+b.y);
}
cd operator -(const cd &b)const{
return cd(x-b.x,y-b.y);
}
cd operator *(const cd &b)const{
return cd(x*b.x - y*b.y,x*b.y + y*b.x);
}
cd operator /(const db &b)const{
return cd(x/b,y/b);
}
}a[N*3],b[N*3],dfta[N*3],dftb[N*3],dftc[N*3],dftd[N*3];
cd conj(cd a){return cd(a.x,-a.y);}
int rev[N*3],A[N],B[N],C[N*3];
void getrev(int bit)
{
for(int i=0;i<(1<<bit);i++)
rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
}
void fft(cd *a,int n,int dft)
{
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int step=1;step<n;step<<=1)
{
cd wn(cos(dft*pi/step),sin(dft*pi/step));
for(int j=0;j<n;j+=step<<1)
{
cd wnk(1,0);
for(int k=j;k<j+step;k++)
{
cd x=a[k];
cd y=wnk*a[k+step];
a[k]=x+y;a[k+step]=x-y;
wnk=wnk*wn;
}
}
}
if(dft==-1)for(int i=0;i<n;i++)a[i]=a[i]/n;
}
void mtt(int n,int m,int p) {
if(n<100&&m<100||min(n,m)<=5)
{
for(int i=0;i<=n+m;i++)C[i]=0;
for(int i=0;i<=n;i++)for(int j=0;j<=m;j++)
{
C[i+j]+=1ll*A[i]*B[j]%p;
if(C[i+j]>=p)C[i+j]-=p;
}
return ;
}
int sz=0;
while((1<<sz)<=n+m)sz++;getrev(sz);
int len=1<<sz;
for(int i=0;i<len;i++)
{
int x=(i>n?0:A[i]%p),y=(i>m?0:B[i]%p);
a[i]=cd(x&0x7fff,x>>15);
b[i]=cd(y&0x7fff,y>>15);
}
fft(a,len,1);fft(b,len,1);
for(int i=0;i<len;i++)
{
int j=(len-i)&(len-1);
cd aa,bb,cc,dd;
aa = (a[i] + conj(a[j])) * cd(0.5, 0);
bb = (a[i] - conj(a[j])) * cd(0, -0.5);
cc = (b[i] + conj(b[j])) * cd(0.5, 0);
dd = (b[i] - conj(b[j])) * cd(0, -0.5);
dfta[j] = aa * cc;dftb[j] = aa * dd;
dftc[j] = bb * cc;dftd[j] = bb * dd;
}
for(int i=0;i<len;i++)
{
a[i] = dfta[i] + dftb[i] * cd(0, 1);
b[i] = dftc[i] + dftd[i] * cd(0, 1);
}
fft(a,len,1);fft(b,len,1);
for(int i=0;i<len;i++)
{
int da = (ll)(a[i].x / len + 0.5) % p;
int bb = (ll)(a[i].y / len + 0.5) % p;
int dc = (ll)(b[i].x / len + 0.5) % p;
int dd = (ll)(b[i].y / len + 0.5) % p;
C[i] = (da + ((ll)(bb + dc) << 15) + ((ll)dd << 30)) % p;
C[i] = (C[i]+p)%p;
}
}
int prime[N],cnt,phi[N];
bool mark[N];
void init()
{
phi[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,phi[i]=i-1;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
}
int n,p,fac,po;
int f(int d)
{
int ans=0;
for(int i=0;i<=n/d;i++)A[i]=prime[i*d],B[i]=prime[i*d];
mtt(n/d,n/d,p);
// for(int i=0;i<=n/d;i++)printf("%d ",C[i]);puts("");
for(int i=0;i<=n/d;i++)
{
ans+=1ll*prime[n-i*d]*C[i]%p;
if(ans>=p)ans-=p;
}
ans=(1ll*ans*fac-1+p)%p;
return ans;
}
int main()
{
// fin;
init();
int t;scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&p);
prime[0]=prime[1]=fac=po=1;
for(int i=2;i<=n;i++)prime[i]=1ll*(p-p/i)*prime[p%i]%p;
for(int i=1;i<=n;i++)prime[i]=1ll*prime[i-1]*prime[i]%p,fac=1ll*fac*i%p,po=1ll*po*3%p;
int ans=0;
for(int d=1;d<=n;d++)
{
ans+=1ll*phi[d]*f(d)%p;
if(ans>=p)ans-=p;
}
printf("%d\n",1ll*ans*po%p);
}
return 0;
}
/********************
********************/
hdu6088 组合数+反演+拆系数fft的更多相关文章
- 拆系数FFT
学习内容:国家集训队2016论文 - 再谈快速傅里叶变换 模板题:http://uoj.ac/problem/34 1.基本介绍 对长度为L的\(A(x),B(x)\)进行DFT,可以利用 \[ \b ...
- 拆系数FFT及其部分优化
模拟考某题一开始由于校内OJ太慢直接拆系数FFT跑不过 后来被神仙婊了一顿之后发现复杂度写炸了改了改随便过 模版题:任意模数NTT 三模数NTT 常数巨大,跑的极慢 拆系数FFT 原理是对于两个多项式 ...
- 拆系数FFT(任意模数FFT)
拆系数FFT 对于任意模数 \(mod\) 设\(m=\sqrt {mod}\) 把多项式\(A(x)\)和\(B(x)\)的系数都拆成\(a\times m+b\)的形式,时\(a, b\)都小于\ ...
- hdu 5730 Shell Necklace——多项式求逆+拆系数FFT
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 可以用分治FFT.但自己只写了多项式求逆. 和COGS2259几乎很像.设A(x),指数是长度,系数 ...
- 洛谷 4245 【模板】任意模数NTT——三模数NTT / 拆系数FFT
题目:https://www.luogu.org/problemnew/show/P4245 三模数NTT: 大概是用3个模数分别做一遍,用中国剩余定理合并. 前两个合并起来变成一个 long lon ...
- 洛谷 P4245 [模板]任意模数NTT —— 三模数NTT / 拆系数FFT(MTT)
题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 m ...
- 拆系数$FFT$($4$遍$DFT$)
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> ...
- 各种数和各种反演(所谓FFT的前置知识?)
每次问NC做多项式的题需要什么知识点. 各种数. 各种反演. 多项式全家桶. 然后我就一个一个地学知识点.然而还差好多,学到后面的前面的已经忘了(可能是我太菜吧不是谁都是NC啊) 然后发现每个知识点基 ...
- [拉格朗日反演][FFT][NTT][多项式大全]详解
1.多项式的两种表示法 1.系数表示法 我们最常用的多项式表示法就是系数表示法,一个次数界为\(n\)的多项式\(S(x)\)可以用一个向量\(s=(s_0,s_1,s_2,\cdots,s_n-1) ...
随机推荐
- [kuangbin带你飞]专题一 简单搜索 - K - 迷宫问题
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...
- ps制作浮雕和投影效果
1用文字横排工具写个hope,按住ctrl+t可以调试出文字工具,上面直接用500点来改变文字的大小.2 用矩形选框工具直接可以切割图片的大小,然后双击一个图层,添加样式为浮雕....然后合并图层3 ...
- python 19 lambda函数
转自http://www.cnblogs.com/BeginMan/p/3178103.html 一.lambda函数 1.lambda函数基础: lambda函数也叫匿名函数,即,函数没有具体的名称 ...
- [每日一个小技巧] CentOS 下使用yum安装一类软件包
版权声明:本文为博主原创文章,欢迎转载,转载请注明出处. https://blog.csdn.net/robertsong2004/article/details/37775313 yum 提供了丰富 ...
- springboot中参数处理
springboot1中处理是这样的 @Configuration public class WebConfig extends WebMvcConfigurerAdapter{ @Autowired ...
- dl,dt,dd标签 VS 传统table实现数据列表
过去有很多网页设计师喜欢将他们的网页效果图用table布局实现成网页,但是这样做会遇到一个比较麻烦的问题就是,后期调试和维护会相当的困难.现在,越来越多的前端开发er们开始使用xHTML+CSS替代最 ...
- C++中的指针(*)、引用(&)、const详解(一、定义变量)
一.前言 本人作为一个工作了5年的程序员,程序生涯最初是从c/c++开始的,但是始终不能很熟悉的理解c语言中的指针和c++中的引用,归其原因,一部分自己没有静下心来思考,一部分原因是其自身的复杂性. ...
- python2x 安装 psutil
安装psutil模块: wget https://pypi.python.org/packages/source/p/psutil/psutil-2.0.0.tar.gz --no-check-cer ...
- 阿里云宣布进入 Serverless 容器时代,推出弹性容器实例服务 ECI
摘要: 阿里云宣布弹性容器实例 ECI(Elastic Container Instance)正式商业化. 为了应对业务高峰,打算提前多久执行ECS扩展?买了ECS虚拟机,容器规格不能完美装箱怎么办? ...
- The Preliminary Contest for ICPC Asia Nanjing 2019 C. Tsy's number 5
https://nanti.jisuanke.com/t/41300 题意:求\(\sum_{i=1}^n\phi(i)\phi(j)2^{\phi(i)\phi(j)}\) \(f_i=\sum_{ ...