洛谷P1020 导弹拦截 题解 LIS扩展题 Dilworth定理
题目链接:https://www.luogu.com.cn/problem/P1020
题目大意:
给你一串数,求:
- 这串数的最长不上升子序列的长度;
- 最少划分成多少个子序列是的这些子序列都是不上升子序列。
第一个问题比较简单,就是用二分的方法 O(log n) 可以解决这个问题。
第二个问题,可以用 Dilworth定理 证明:
在一个序列中,最长不上升子序列的最少划分数就等于其最长上升子序列的长度
Dilworth定理参考自:https://www.cnblogs.com/ZDHYXZ/p/6871802.html
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100010;
int n, cnt, a[maxn], h[maxn], ans;
int main() {
while (~scanf("%d", &a[n])) n ++;
for (int i = 0; i < n; i ++) {
int id = upper_bound(h, h+cnt, a[i], greater<int>()) - h;
if (id == cnt) h[cnt++] = a[i];
else h[id] = a[i];
}
ans = cnt;
cnt = 0;
for (int i = 0; i < n; i ++) {
int id = lower_bound(h, h+cnt, a[i]) - h;
if (id == cnt) h[cnt++] = a[i];
else h[id] = a[i];
}
printf("%d\n%d\n", ans, cnt);
return 0;
}
洛谷P1020 导弹拦截 题解 LIS扩展题 Dilworth定理的更多相关文章
- 洛谷 P1020导弹拦截题解
洛谷链接:https://www.luogu.org/problem/P1020 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到 ...
- 洛谷 P1020 导弹拦截 (LIS)
第一问最长 不上升子序列,第二问最长上升子序列 套模板就好https://blog.csdn.net/qq_34416123/article/details/81358447 那个神奇的定理当作结论吧 ...
- codevs1044 拦截导弹==洛谷 P1020 导弹拦截
P1020 导弹拦截 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天 ...
- 洛谷P1020导弹拦截——LIS
题目:https://www.luogu.org/problemnew/show/P1020 主要是第二问,使用了dilworth定理:一个序列中最长不上升子序列的最大覆盖=最长上升子序列长度. di ...
- 洛谷 P1020 导弹拦截(dp+最长上升子序列变形)
传送门:Problem 1020 https://www.cnblogs.com/violet-acmer/p/9852294.html 讲解此题前,先谈谈何为最长上升子序列,以及求法: 一.相关概念 ...
- codevs——T1044 拦截导弹 || 洛谷——P1020 导弹拦截
http://codevs.cn/problem/1044/ || https://www.luogu.org/problem/show?pid=1020#sub 时间限制: 1 s 空间限制: 1 ...
- 洛谷 [P1020] 导弹拦截 (N*logN)
首先此一眼就能看出来是一个非常基础的最长不下降子序列(LIS),其朴素的 N^2做法很简单,但如何将其优化成为N*logN? 我们不妨换一个思路,维护一个f数组,f[x]表示长度为x的LIS的最大的最 ...
- 洛谷 - P1020 - 导弹拦截 - 最长上升子序列
https://www.luogu.org/problemnew/show/P1020 终于搞明白了.根据某定理,最少需要的防御系统的数量就是最长上升子序列的数量. 呵呵手写二分果然功能很多,想清楚自 ...
- 洛谷P1020 导弹拦截【单调栈】
题目:https://www.luogu.org/problemnew/show/P1020 题意: 给定一些导弹的高度. 一个导弹系统只能拦截高度不增的一系列导弹,问如果只有一个系统最多能拦截多少导 ...
随机推荐
- thinkphp 清理runtime缓存的方法, 清理指定目录
https://blog.csdn.net/qq_22823581/article/details/79081497 hinkphp 清理runtime缓存的方法, 清理指定目录 function d ...
- 洛谷 2152 [SDOI2009]SuperGCD
Description Sheng bill有着惊人的心算能力,甚至能用大脑计算出两个巨大的数的GCD(最大公约 数)!因此他经常和别人比赛计算GCD.有一天Sheng bill很嚣张地找到了你,并要 ...
- X-WAF 安装配置指南
X-WAF 是一款方便易用的云WAF,使用反向代理的方式介入Web服务器和访问者之间,不需要像 modSecurity 和 Naxsin 那样作为nginx的模块,需要进行编译安装 X-WAF使用 O ...
- Pytorch学习记录-torchtext和Pytorch的实例( 使用神经网络训练Seq2Seq代码)
Pytorch学习记录-torchtext和Pytorch的实例1 0. PyTorch Seq2Seq项目介绍 1. 使用神经网络训练Seq2Seq 1.1 简介,对论文中公式的解读 1.2 数据预 ...
- hdu 1289 Hat’s IEEE
Problem - 1289 好题.其实就是模拟IEEE754的格式,不过要注意的是,这里用的32位是float,用double就不对了. 代码如下: #include <cstdio> ...
- angularJS $q
1.$q $q是Angular的一种内置服务,它可以使你异步地执行函数,并且当函数执行完成时它允许你使用函数的返回值(或异常). 2.defer defer的字面意思是延迟, $q.defer() ...
- 基于BERT预训练的中文命名实体识别TensorFlow实现
BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...
- python开启GPU加速
看了好多教程都提到了使用 os.environ["CUDA_VISIBLE_DEVICES"] = "1" 或者export CUDA_VISIBLE_DEVI ...
- Python--day24--复习
- 解析XML内容到User对象
users.xml <?xml version="1.0" encoding="UTF-8"?> <xml-root> <conn ...