FFT与一些冷门问题
FFT也能用于一些特殊的字符串匹配与最小化问题。
Prob 1 : 给出模式串A与文本串B,两个串中只有26个大写字母与通配符'?'(即可以任意匹配一个字符),求A在B中的匹配数。要求以FFT为例给出上限为O(nlogn)的算法。
Prob 2 : 给出模式串A与文本串B,字符集很小,求A在B中的匹配数,允许有k个字符不同。要求以FFT为例给出上限为O(nlogn*|S|)的算法。
Prob 3 : 给出数列a和b,长度均为n,a可以顺时针转动但不能翻转,最小化sigma(ai*bi)。要求以FFT为例给出上限为O(nlogn)的算法。
不知道是什么东西的引导
我们先看看FFT干了什么,就是个卷积。
以数组a和b为例(这里下标从1开始),a有4位,b有8位,卷出的结果放在c数组中。

然而并没有什么用处。我们再往后看几位:

虽然FFT时会把a数组给自动补全,但从实际意义上来讲,只是整个a数组与b数组中四个数相乘放进c中。
不难发现,此时的下标就是一个“占位符”。
我们顺便把a数组反一反,就有:

这样就有很好的性质了,c数组中从第5位开始,每往后一位就是整个a数组与b数组中连续的四位积的和。
同样可以拓展到更大的数组中,接下来的题目就要利用这个特点。
Prob 1
我们发现字符串的匹配很类似于上述图片中一位位算过去。
先不考虑通配符,只是普通的字符串匹配。定义
为A的第x位与B的第y位的匹配度。若C为0,则是匹配的。
再定义
,表示B字符串中以x为结尾,向前m-1位与A字符串的匹配度。我们天真地考虑若P为0,则是匹配的。
但是C有正有负,因此一旦连续的几位的可重集是相同的,P的结果就为0。
所以在C上动手脚。干脆加个平方吧:
这样,

但还不能优化!因此我们又看了看上面的图,把A字符串反了过来。定义
则
注意到(m-i-1)+(x-m+1+i)==x,有:


这样S与B做一遍卷积就行了。S与B的值取字符串的字符值就行了。
那带上通配符,只要有任何字符遇上“?”,C的值就必须是0。这样在原来P的式子中,后面乘上S与B中相应的第几位,若是“?”,给其赋值为0。则

做三次FFT,加起来等于0的,即为匹配。
//源:https://www.luogu.org/problemnew/show/P4173
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
const double pi=3.1415926535898;
struct com
{
double a,b;
com(double A=,double B=){a=A,b=B;}
void operator=(com x){a=x.a,b=x.b;}
com operator+(com x){return com(a+x.a,b+x.b);}
com operator-(com x){return com(a-x.a,b-x.b);}
com operator*(com x){return com(a*x.a-b*x.b,a*x.b+b*x.a);}
com operator/(double d){return com(a/d,b/d);}
com operator*(double d){return com(a*d,b*d);}
}A[maxn],B[maxn],ans[maxn];
int n,m,limit,r[maxn],len,g1[maxn],g2[maxn];
char ch;
int re(int x)
{
int sum=;
for(int i=;i<len;++i)
{
sum=sum*+x%;
x/=;
}
return sum;
}
void FFT(com*A,int g)
{
for(int i=;i<limit;++i)
if(i<r[i])swap(A[i],A[r[i]]);
for(int i=;i<=limit;i*=)
{
com w(cos(*pi/i),g*sin(*pi/i));
for(int j=;j<limit/i;++j)
{
com d(,);
for(int k=;k<i/;++k)
{
com a=A[i*j+k],b=d*A[i*j+i/+k];
A[i*j+k]=a+b;
A[i*j+i/+k]=a-b;
d=w*d;
}
}
}
}
void out(com*A)
{
for(int i=;i<limit;++i)cout<<A[i].a<<' ';
cout<<endl;
}
void get(com*A,com*B)
{
FFT(A,);
FFT(B,);
for(int i=;i<limit;++i)A[i]=A[i]*B[i];
FFT(A,-);
for(int i=;i<limit;++i)A[i]=A[i]/limit;
}
int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
for(int i=n-;i>=;--i)
{
cin>>ch;
if(ch!='*')
{
int x=ch-'a'+;
A[i]=g1[i]=x;
}
}
for(int i=;i<m;++i)
{
cin>>ch;
if(ch!='*')
{
int x=ch-'a'+;
g2[i]=x;
B[i]=x*x*x;
}
}
limit=;
while(limit<n+m+)limit*=,++len;
for(int i=;i<limit;++i)r[i]=re(i);
get(A,B);
for(int i=;i<limit;++i)ans[i]=A[i]; for(int i=limit-;i>=;--i)A[i]=g1[i]*g1[i]*g1[i];
for(int i=;i<limit;++i)B[i]=g2[i];
get(A,B);
for(int i=;i<limit;++i)ans[i]=ans[i]+A[i]; for(int i=limit-;i>=;--i)A[i]=g1[i]*g1[i];
for(int i=;i<limit;++i)B[i]=g2[i]*g2[i];
get(A,B);
for(int i=;i<limit;++i)ans[i]=ans[i]-A[i]*; int tot=;
for(int i=n-;i<m;++i)if(int(ans[i].a+0.5)==)++tot;
cout<<tot<<endl;
for(int i=n-;i<m;++i)if(int(ans[i].a+0.5)==)cout<<i-n+<<' ';
cout<<endl;
return ;
}
代码
Prob 2
若字符只有’0'和'1'的呢?按照上面的做法,最后结果小于等于2的即为匹配(因为会有地方算两遍)。
再拓展一下,字符集多大就做几遍。最后的和加起来即可。
但由于一些奇妙的原因,至今我交不过去。只有网址。
其实随便哈希就能过了,SA也行。
https://www.luogu.org/problemnew/show/P3763
Prob 3
仍然是老套路。我们只要把其中某个数组的长度变为两倍,再重复写下前面的数就行了。
类似的题目:https://www.luogu.org/problemnew/show/P3723
最后,如果能用一些数据结构或方法来维护的话就别写FFT了。
FFT与一些冷门问题的更多相关文章
- 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)
对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...
- 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2978 Solved: 1523[Submit][Status][Di ...
- 为什么FFT时域补0后,经FFT变换就是频域进行内插?
应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的 ...
- FFT NNT
算算劳资已经多久没学新算法了,又要重新开始学辣.直接扔板子,跑...话说FFT算法导论里讲的真不错,去看下就懂了. //FFT#include <cstdio> #include < ...
- CC countari & 分块+FFT
题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...
- ECF R9(632E) & FFT
Description: 上一篇blog. Solution: 同样我们可以用fft来做...就像上次写的那道3-idoit一样,对a做k次卷积就好了. 同样有许多需要注意的地方:我们只是判断可行性, ...
- fft练习
数学相关一直都好弱啊>_< 窝这个月要补一补数学啦, 先从基础的fft补起吧! 现在做了 道. 窝的fft 模板 (bzoj 2179) #include <iostream> ...
- FFT时域与频域的关系,以及采样速率与采样点的影响
首先对于FFT来说,输入的信号是一个按一定采样频率获得的信号序列,而输出是每个采样点对应的频率的幅度(能量). 下面详细分析: 在FFT的输出数据中,第一个值是直流分量的振幅(这样对应周期有无穷的可能 ...
- 【玩转单片机系列002】 如何使用STM32提供的DSP库进行FFT
前些日子,因为需要在STM32F103系列处理器上,对采集的音频信号进行FFT,所以花了一些时间来研究如何高效并精确的在STM32F103系列处理器上实现FFT.在网上找了很多这方面的资料做实验并进行 ...
随机推荐
- Python类中的__init__() 和 self 的解析
原文地址https://www.cnblogs.com/ant-colonies/p/6718388.html 1.Python中self的含义 self,英文单词意思很明显,表示自己,本身. 此处有 ...
- python 中为什么不需要重载 参数*arg和**args
函数重载主要是为了解决两个问题. (1)可变参数类型. (2) 可变参数个数. 另外,一个基本的设计原则是,仅仅当两个函数除了参数类型和参数个数不同以外,其功能是完全相同的,此时才使用函数重载,如果两 ...
- jmeter二次开发之java请求
现在很多公司都用的是微服务,每个服务的请求协议有可能不相同,怎样用jmeter二次开发自己的java请求? 下面是具体的开发步骤: 1,把需要的jar包 添加到maven依赖中 jmeter中java ...
- C#文件流的读写
1.文件流写入的一般步骤 1.定义一个写文件流 2.定义一个要写入的字符串 3.完成字符串转byte数组 4.把字节数组写入指定路径的文件 5.关闭文件流 2.文件流读入的一般步骤 1.定义一个读文件 ...
- 【Spark-core学习之二】 RDD和算子
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...
- flask 定义数据库关系(多对多)
多对多 我们使用学生和老师来演示多对多关系:每个学生有多个老师,每个老师有多个学生.多对多关系示意图如下: 在实例程序中,Student类表示学生,Teacher类表示老师.在这两个模型之间建立多对多 ...
- Access restriction: The type 'Unsafe' is not API
错误:Access restriction: The type 'Unsafe' is not API Eclipse中有一种叫做存取限制的机制,来防止你错误使用那些非共享的API.通常来说,Ecli ...
- CSS——对position定位和margin-top的理解
一.常见定位方式 1.positon:absolute (脱离文档流) 生成绝对定位的元素,相对于 static 定位以外的第一个父元素进行定位 (这里的父元素是指定位方式为relative和abso ...
- flutter popup
card ? Overlay https://docs.flutter.io/flutter/widgets/Overlay-class.html pending....
- 破解网页右键被禁止js
按F12,点击console输入一下内容后按回车 javascript:alert(document.onselectstart = document.oncontextmenu= document. ...