原文地址:http://www.mbtmag.com/blog/2017/04/artificial-intelligence-making-it-work-industrial-companies?cmpid=horizontalcontent

作者:Pete Eppele is Senior Vice President of Products and Science at Zilliant. B2-AI company

AI in B2B

In B2B, it’s all about expanding existing customer relationships versus the more transactional, customer acquisition focus we see in B2C. The introduction of Einstein has prompted organizations to think in new ways about how AI can help improve their customer relationships. CRM, CPQ and other similar technologies are an essential foundation to improving seller efficiency. Adding a layer of intelligence (more specifically, artificial intelligence) can rapidly accelerate the value and power delivered through a company’s technology stack. For B2B industrial companies, the implications are exciting, prompting company leaders to ask critical questions such as:

  • What if AI helped us know every customer as well as our best customer?
  • What if AI empowered every sales person to perform like our top performer?
  • What if AI enabled my sellers to sell the entire product portfolio?
  • What if AI provided deal-specific prices that are most likely to result in a win?
  • What if AI could bring sales person smarts to e-commerce interactions?

Industrial companies need AI to deliver action-oriented insights to sales teams so they can drive deep, long-term customer relationships by anticipating customer needs, fighting off competitive threats, growing wallet share in accounts, and quoting consistently across all sales channels. Existing AI applications in B2B focus on retention, growth and flexible pricing that empowers companies to respond to complex dynamics such as inflation, deflation, volatile cost conditions, extreme competition, regional factors and much more. AI applications in B2B truly offer a massive opportunity to optimize the value of every customer relationship and interaction.

Is it Truly AI? Some Pointers

There’s incredible buzz around AI now, which means nearly every solution provider will be touting that they deliver AI, machine learning or deep learning. Be wary of providers that are new to the game and don’t have a deep history in B2B steeped in delivering artificial intelligence to solve the unique problems outlined above. Providers with this rich background paired with best-in-class technologies are the ones to look for. Make sure the output of the AI model is actionable, meaning it’s delivered seamlessly into your existing CPQ, e-commerce platform, CRM, home grown tool, ERP, or otherwise. You want guidance to flow into the applications that your reps use every day. From an architecture standpoint, multi-tenant SaaS is critical and the benefits are vast. From total-cost-of-ownership, to seamless upgrades, to everything in between, multi-tenant SaaS should be on your list of criteria. Most importantly, however, is having the right domain knowledge and expertise in place to build out the guidance model. In other words, to get the best results from AI models, it’s critical for data scientists to have the necessary domain expertise.

【转】机器学习在B2B的应用的更多相关文章

  1. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  2. 机器学习在SAP Cloud for Customer中的应用

    关于机器学习这个话题,我相信我这个公众号1500多位关注者里,一定有很多朋友的水平比Jerry高得多.如果您看过我以前两篇文章,您就会发现,我对机器学习仅仅停留在会使用API的层面上. 使用Java程 ...

  3. .NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍

    Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来.因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器 ...

  4. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  5. BAT“搅局”B2B市场,CIO们准备好了吗?

    "CIO必须灵活构建其所在企业的IT系统,深入业务,以应对日新月异的数字化业务环境."   BAT军团"搅局"B2B市场,CIO们准备好了吗? 庞大的企业级市场 ...

  6. 借助亚马逊S3和RapidMiner将机器学习应用到文本挖掘

    本挖掘典型地运用了机器学习技术,例如聚类,分类,关联规则,和预测建模.这些技术揭示潜在内容中的意义和关系.文本发掘应用于诸如竞争情报,生命科学,客户呼声,媒体和出版,法律和税收,法律实施,情感分析和趋 ...

  7. Android开发学习之路-机器学习库(图像识别)、百度翻译

    对于机器学习也不是了解的很深入,今天无意中在GitHub看到一个star的比较多的库,就用着试一试,效果也还行.比是可能比不上TensorFlow的,但是在Android上用起来比较简单,毕竟Tens ...

  8. 快消品迎来B2B元年,行业将如何变革?

    一年接近尾声,又到了年终总结的时候,宴会厅里传来各种激情澎湃的演讲,有的行业遍地开花.欢声笑语不绝于耳:有的行业却没能迎来"昨夜东风",只能嗟叹"不堪回首".2 ...

  9. 【NLP】基于机器学习角度谈谈CRF(三)

    基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都 ...

随机推荐

  1. Android批量验证渠道、版本号(windows版)

    功能:可校验单个或目录下所有apk文件的渠道号.版本号,此为windows版,稍后整理Linux版使用说明:1.copy需要校验的apk文件到VerifyChannelVersion目录下2.双击运行 ...

  2. [UE4]Wrap Box流布局

    一.Wrap Box的子控件可以根据Wrap Box的大小自动换行 1.Wrap Box.Inner Slot Padding:Wrap Box所有子控件留白,可以实现每个控件之间的间距都是相同,但是 ...

  3. 笔记本 原来win10系统改装win7系统遇到 invaid signature detected.check secure boot policy setup问题

    这次操作的笔记本电脑是   华硕R414U 大家如果遇到类似问题的话也可以参考这个方法,但是必须搞清楚电脑的型号,型号不同操作起来有差别的 我这里选择的重装系统的方法是最简单粗暴的硬盘安装方法,怎么硬 ...

  4. JOSN转列格式(csv文件)

    推荐网站 https://json-csv.com/ 限制1M大小

  5. day28元类与异常查找

    元类与异常处理1. 什么是异常处理    异常是错误发生的信号,一旦程序出错就会产生一个异常,如果该异常    没有被应用程序处理,那么该异常就会抛出来,程序的执行也随之终止    异常包含三个部分: ...

  6. python学习笔记_week28

    heap import heapq import random heap = [] data = list(range(10000)) random.shuffle(data) # for num i ...

  7. 再谈PHP设计模式

    设计模式 单例模式解决的是如何在整个项目中创建唯一对象实例的问题,工厂模式解决的是如何不通过new建立实例对象的方法. 单例模式 $_instance必须声明为静态的私有变量 构造函数和析构函数必须声 ...

  8. Java并发辅助类的使用

    目录 1.概述 2.CountdownLatch 2-1.构造方法 2-2.重要方法 2-3.使用示例 3.CyclicBarrier 3-1.构造方法 3-2.使用示例 4.Semaphore 4- ...

  9. mysql简单介绍及安装

    MySQL是一个关系型数据库管理系统关系数据库,将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性,所使用的 SQL 语言是用于访问数据库的最常用标准化语言.My ...

  10. Vue.js组件之间的调用

    index.html: <div id="app"></div> 运行完index.html之后自动寻找运行main.js文件 main.js: impor ...