原文地址:http://www.mbtmag.com/blog/2017/04/artificial-intelligence-making-it-work-industrial-companies?cmpid=horizontalcontent

作者:Pete Eppele is Senior Vice President of Products and Science at Zilliant. B2-AI company

AI in B2B

In B2B, it’s all about expanding existing customer relationships versus the more transactional, customer acquisition focus we see in B2C. The introduction of Einstein has prompted organizations to think in new ways about how AI can help improve their customer relationships. CRM, CPQ and other similar technologies are an essential foundation to improving seller efficiency. Adding a layer of intelligence (more specifically, artificial intelligence) can rapidly accelerate the value and power delivered through a company’s technology stack. For B2B industrial companies, the implications are exciting, prompting company leaders to ask critical questions such as:

  • What if AI helped us know every customer as well as our best customer?
  • What if AI empowered every sales person to perform like our top performer?
  • What if AI enabled my sellers to sell the entire product portfolio?
  • What if AI provided deal-specific prices that are most likely to result in a win?
  • What if AI could bring sales person smarts to e-commerce interactions?

Industrial companies need AI to deliver action-oriented insights to sales teams so they can drive deep, long-term customer relationships by anticipating customer needs, fighting off competitive threats, growing wallet share in accounts, and quoting consistently across all sales channels. Existing AI applications in B2B focus on retention, growth and flexible pricing that empowers companies to respond to complex dynamics such as inflation, deflation, volatile cost conditions, extreme competition, regional factors and much more. AI applications in B2B truly offer a massive opportunity to optimize the value of every customer relationship and interaction.

Is it Truly AI? Some Pointers

There’s incredible buzz around AI now, which means nearly every solution provider will be touting that they deliver AI, machine learning or deep learning. Be wary of providers that are new to the game and don’t have a deep history in B2B steeped in delivering artificial intelligence to solve the unique problems outlined above. Providers with this rich background paired with best-in-class technologies are the ones to look for. Make sure the output of the AI model is actionable, meaning it’s delivered seamlessly into your existing CPQ, e-commerce platform, CRM, home grown tool, ERP, or otherwise. You want guidance to flow into the applications that your reps use every day. From an architecture standpoint, multi-tenant SaaS is critical and the benefits are vast. From total-cost-of-ownership, to seamless upgrades, to everything in between, multi-tenant SaaS should be on your list of criteria. Most importantly, however, is having the right domain knowledge and expertise in place to build out the guidance model. In other words, to get the best results from AI models, it’s critical for data scientists to have the necessary domain expertise.

【转】机器学习在B2B的应用的更多相关文章

  1. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  2. 机器学习在SAP Cloud for Customer中的应用

    关于机器学习这个话题,我相信我这个公众号1500多位关注者里,一定有很多朋友的水平比Jerry高得多.如果您看过我以前两篇文章,您就会发现,我对机器学习仅仅停留在会使用API的层面上. 使用Java程 ...

  3. .NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍

    Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来.因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器 ...

  4. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  5. BAT“搅局”B2B市场,CIO们准备好了吗?

    "CIO必须灵活构建其所在企业的IT系统,深入业务,以应对日新月异的数字化业务环境."   BAT军团"搅局"B2B市场,CIO们准备好了吗? 庞大的企业级市场 ...

  6. 借助亚马逊S3和RapidMiner将机器学习应用到文本挖掘

    本挖掘典型地运用了机器学习技术,例如聚类,分类,关联规则,和预测建模.这些技术揭示潜在内容中的意义和关系.文本发掘应用于诸如竞争情报,生命科学,客户呼声,媒体和出版,法律和税收,法律实施,情感分析和趋 ...

  7. Android开发学习之路-机器学习库(图像识别)、百度翻译

    对于机器学习也不是了解的很深入,今天无意中在GitHub看到一个star的比较多的库,就用着试一试,效果也还行.比是可能比不上TensorFlow的,但是在Android上用起来比较简单,毕竟Tens ...

  8. 快消品迎来B2B元年,行业将如何变革?

    一年接近尾声,又到了年终总结的时候,宴会厅里传来各种激情澎湃的演讲,有的行业遍地开花.欢声笑语不绝于耳:有的行业却没能迎来"昨夜东风",只能嗟叹"不堪回首".2 ...

  9. 【NLP】基于机器学习角度谈谈CRF(三)

    基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都 ...

随机推荐

  1. 用网站把图标做成iconFont文件引用

    1,把psd文件另存为eps文件(ai能打开的格式),前提图标有路径, 2,用ai打开eps文件 3,新建一个空白文件100*100,然后把图标复制进来,等比拉宽至最大化 4,如果图标有蒙版,就点击图 ...

  2. C++ Programming Language中的narrow_cast实现

    在C++中,各种数值类型的转化是C++编译过程中警告的主要来源,但是,很多时候,我们需要使用各种数值类型,例如我们用数组的某一位表示大小为对应序号的值,这种情况下,经常会涉及多种数值类型.根据C++ ...

  3. iOS上传本地代码到git

    1.顾名思义,首先你得注册一个github账户 这个我就不细说了. 2.然后你得创建一个 repository  步骤见下图 3.相当于创建成功 会跳到下图界面 4.一看就很清楚了 create a ...

  4. MFC/VC CxImage 编译问题 (VS2013)

    最近在搞CxImage,幸好看到一些前辈的积累,避免了很多坑,CxImage默认是VC6.0编译的,因为我用的VS2013,所以从新编译一下,参考前辈博客https://www.cnblogs.com ...

  5. java为什么不能根据返回值重载?

    我以前对Java中为什么不能根据返回值进行重载,而只能根据方法的参数进行重载非常不理解.比如void f(){}和int f(){},虽然他们有同样的名字,但是很容易区分.如果我这样做,肯定是没问题的 ...

  6. ie和dom事件流的区别

    1.事件流的区别 IE采用冒泡型事件 Netscape使用捕获型事件 DOM使用先捕获后冒泡型事件 示例: 复制代码代码如下: <body> <div> <button& ...

  7. TensorFlow NormLization

    local_response_normalization local_response_normalization出现在论文”ImageNet Classification with deep Con ...

  8. js类的继承,es5和es6的方法

    存在的差异:1. 私有数据继承差异 es5:执行父级构造函数并且将this指向子级 es6:在构造函数内部执行super方法,系统会自动执行父级,并将this指向子级2. 共有数据(原型链方法)继承的 ...

  9. [UnityAPI]SerializedObject类 & SerializedProperty类

    以Image类为例 1.MyImage.cs using UnityEngine; using UnityEngine.UI; public class MyImage : Image { ; pro ...

  10. C# 设置Excel数字格式

    数字格式使指能够控制Excel单元格中数字如何显示的格式字符串.例如,我们可以对数字12345应用数字格式“0.00”,使之显示为“12345.00”.在例如对数字12345应用“¥0.00”格式,使 ...