斐波那契额数列的第N项

斐波那契数列的定义如下:

F(0) = 0

F(1) = 1

F(n) = F(n - 1) + F(n - 2) (n >= 2)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)

给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。

输入

输入1个数n(1 <= n <= 10^18)。

输出

输出F(n) % 1000000009的结果。

输入样例

11

输出样例

89

思路

矩阵快速幂的模板

下面是快速幂的模板,具体怎么来的请自行百度,我们将根据这个模板写矩阵快速幂

LL Qpow(LL a, LL b)
{
LL ret = 1, base = a;
while(b)
{
if(b & 1)
ret *= base;
base *= base;
b >>= 1;
}
return ret;
}

当我们用矩阵代替底数a时,这就涉及到ret和base的初始化和矩阵乘法

所以得出下面矩阵快速幂的模板

struct M
{
LL m[N][N];
};
M mul(M a, M b, int n)
{
M t;
//初始化
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
t.m[i][j] = 0;
//乘法运算
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
for(int k = 1;k <= n;++k)
t.m[i][j] = (t.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;//取模,视题目而定
return t;
}
M M_Qpow(M a, LL b, int n)
{
M ret, base;
//初始化,根据快速幂中,ret = 1,ret初始化成单位矩阵
for(int i = 1;i <= n;++i)
{
for(int j = 1;j <= n;++j)
{
ret.m[i][j] = 0;
ret.m[i][i] = 1;
base.m[i][j] = a.m[i][j];
}
}
//注意矩阵乘法中a*b != b*a
while(b)
{
if(b & 1)
ret = mul(ret, base, n);
base = mul(base, base, n);
b >>= 1;
}
return ret;
}

这道题中,构造这样的矩阵[fn, fn - 1] * b = [fn + 1, fn],然后求矩阵b,这个矩阵容易推算出来

b = [1, 1

1, 0]

解题代码

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <sstream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <iomanip>
#include <stack> using namespace std; typedef long long LL;
const int INF = 0x3f3f3f3f;
const int N = 105;
const int MOD = 1e9 + 9; struct M
{
LL m[N][N];
};
M mul(M a, M b, int n)
{
M t;
//初始化
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
t.m[i][j] = 0;
//乘法运算
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
for(int k = 1;k <= n;++k)
t.m[i][j] = (t.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;
return t;
} M M_Qpow(M a, LL b, int n)
{
M ret, base;
//初始化,根据快速幂中,ret = 1,ret初始化成单位矩阵
for(int i = 1;i <= n;++i)
{
for(int j = 1;j <= n;++j)
{
ret.m[i][j] = 0;
ret.m[i][i] = 1;
base.m[i][j] = a.m[i][j];
}
}
//注意矩阵乘法中a*b != b*a
while(b)
{
if(b & 1)
ret = mul(ret, base, n);
base = mul(base, base, n);
b >>= 1;
}
return ret;
} int main()
{
M a, b;
b.m[1][1] = 1, b.m[1][2] = 1, b.m[2][1] = 1, b.m[2][2] = 0;
a.m[1][1] = 1, a.m[1][2] = 0;
LL n;
cin >> n;
M c = mul(a, M_Qpow(b, n - 1, 2), 2);
cout << c.m[1][1] << endl;
return 0;
}

矩阵快速幂--51nod-1242斐波那契数列的第N项的更多相关文章

  1. (矩阵快速幂)51NOD 1242斐波那契数列的第N项

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

  2. 51nod 1242 斐波那契数列的第N项

    之前一直没敢做矩阵一类的题目 其实还好吧 推荐看一下 : http://www.cnblogs.com/SYCstudio/p/7211050.html 但是后面的斐波那契 推导不是很懂  前面讲的挺 ...

  3. 51Nod 1242 斐波那契数列的第N项(矩阵快速幂)

    #include <iostream> #include <algorithm> using namespace std; typedef long long LL; ; ; ...

  4. 51nod 1242 斐波那契数列的第N项——数学、矩阵快速幂

    普通算法肯定T了,所以怎么算呢?和矩阵有啥关系呢? 打数学符号太费时,就手写了: 所以求Fib(n)就是求矩阵  |  1  1  |n-1  第一行第一列的元素. |  1  0  | 其实学过线代 ...

  5. 51 Nod 1242 斐波那契数列的第N项(矩阵快速幂模板题)

    1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) ...

  6. 1242 斐波那契数列的第N项

    1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题   斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F( ...

  7. 51Nod——T 1242 斐波那契数列的第N项

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242 基准时间限制:1 秒 空间限制:131072 KB 分值: 0  ...

  8. python脚本10_打印斐波那契数列的第101项

    #打印斐波那契数列的第101项 a = 1 b = 1 for count in range(99): a,b = b,a+b else: print(b) 方法2: #打印斐波那契数列的第101项 ...

  9. 51Nod - 1242 斐波那契(快速幂)

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

随机推荐

  1. [BAT] 通过批处理加host

    echo. >> %WINDIR%\system32\drivers\etc\hosts & echo xxx.xxx.xxx.xx test_host >> %WIN ...

  2. Flip

    Flip是一个能够让任意HTML.文本或jQuery Element产生漂亮翻转效果的jQuery插件. 可以配置翻转方向:从右到左.上到下或从左到右.下到上.翻转的速度也可以配置. 效果如下图所示: ...

  3. UEFI下win10+Ubuntu双启动后完全纯净卸载Ubuntu,重建BCD

    以下内容操作具有风险,操作前请提前备份数据.建议由有丰富经验的人使用,需要掌握diskpart. 背景 使用ubuntu+win10 dual boot后,需要重置回纯净win10系统. BCD是Bo ...

  4. Ubuntu14.04 下安装Vmware-Tools

    1.切换到ubuntu 图形界面 startx , 点击虚拟机菜单栏-安装VMware Tools 2. 在Ubuntu系统中找到VMwareTools-9.2.2-893683.tar.gz ,右键 ...

  5. 选项“6”对 /langversion 无效;必须是 ISO-1、ISO-2、3、4、5 或 Default

    部署MVC的时候,因为服务器.NET版本是4.5.1,所以在vs将.NET版本降到4.5.1的时候发布报错. 原因:C#6降到C#5导致 解决办法:修改web.config配置 ,编译选项改为comp ...

  6. windows10最实用的快捷键、高效的windows模式

    win+方向键 将软件窗口放置到方向 ctrl+win+左右方向键 切换虚拟桌面 win+tab 选择窗口或虚拟桌面,然后按着win随后放开,界面停留 alt+tab 切换窗口 ctrl+win+D ...

  7. Web大文件(夹)上传(断点续传)控件发布-Xproer.HttpUploader6

    版权所有 2009-2017荆门泽优软件有限公司 保留所有权利 官方网站:http://www.ncmem.com/ 产品首页:http://www.ncmem.com/webapp/up6.2/in ...

  8. Apache mod_rewrite规则重写的标志说明

    1.R[=code](force redirect) 强制外部重定向,强制在替代字符串加上http://thishost[:thisport]/前缀重定向到外部的URL.如果code不指定,将用缺省的 ...

  9. [LintCode笔记了解一下]44.Minimum Subarray

    这道题和max subarray很类似,我用local 和 global 的dp方式阔以解决这道 那么我们来看动态规划的四个要素分别是什么? State: localmin[i] 表示以当前第i个数最 ...

  10. 无线显示技术:WiDi,WLAN Display,Air Play,Miracast的摘抄

    除了标题提到的WIDI,WLAN Display,Air Play之外,还有Miracast与DLNA的概念,他们之间的区别和联系是什么呢? WIDI: WiDi是英特尔主导的无线音视频传输技术,这也 ...