【跟着stackoverflow学Pandas】How to iterate over rows in a DataFrame in Pandas-DataFrame按行迭代
最近做一个系列博客,跟着stackoverflow学Pandas。
以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序:
https://stackoverflow.com/questions/tagged/pandas?sort=votes&pageSize=15
How to iterate over rows in a DataFrame in Pandas-DataFrame按行迭代
https://stackoverflow.com/questions/16476924/how-to-iterate-over-rows-in-a-dataframe-in-pandas
在对DataFrame进行操作时,我们不可避免的需要逐行查看或操作数据,那么有什么高效、快捷的方法呢?
index序号索引
import pandas as pd
inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
df = pd.DataFrame(inp)
for x in xrange(len(df.index)):
print df['c1'].iloc[x]
这似乎是最常规的办法,而且可以在迭代的过程中对DataFrame进行操作。
enumerate
for i, row in enumerate(df.values):
index= df.index[i]
print row
df.values 是 numpy.ndarray 类型
这里 i 是index的序号, row是numpy.ndarray类型。
iterrows
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.iterrows.html
import pandas as pd
inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
df = pd.DataFrame(inp)
for index, row in df.iterrows():
print row['c1'], row['c2']
#10 100
#11 110
#12 120
df.iterrows() 的每次迭代都是一个tuple类型,包含了index和每行的数据。
- 采用iterrows的方法,得到的 row 是一个Series,DataFrame的dtypes不会被保留。
- 返回的Series只是一个原始DataFrame的复制,不可以对原始DataFrame进行修改;
itertuples
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.itertuples.html
import pandas as pd
inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
df = pd.DataFrame(inp)
for row in df.itertuples():
# print row[0], row[1], row[2] 等同于
print row.Index, row.c1, row.c2
itertuples 返回的是一个 pandas.core.frame.Pandas 类型。
普遍认为itertuples 比 iterrows的速度要快。
zip / itertools.izip
zip 和 itertools.izip的用法是相似的, 但是zip返回一个list,而izip返回一个迭代器。 如果数据量很大,zip的性能不及izip
from itertools import izip
import pandas as pd
inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
df = pd.DataFrame(inp)
for row in izip(df.index, df['c1'], df['c2']):
print row
时间测评
import time
from numpy.random import randn
df = pd.DataFrame({'a': randn(100000), 'b': randn(100000)})
time_stat = []
# range(index)
test_list = []
t = time.time()
for r in xrange(len(df)):
test_list.append((df.index[r], df.iloc[r,0], df.iloc[r,1]))
time_stat.append(time.time()-t)
# enumerate
test_list = []
t = time.time()
for i, r in enumerate(df.values):
test_list.append((df.index[i], r[0], r[1]))
time_stat.append(time.time()-t)
# iterrows
test_list = []
t = time.time()
for i,r in df.iterrows():
test_list.append((df.index[i], r['a'], r['b']))
time_stat.append(time.time()-t)
#itertuples
test_list = []
t = time.time()
for ir in df.itertuples():
test_list.append((ir[0], ir[1], ir[2]))
time_stat.append(time.time()-t)
# zip
test_list = []
t = time.time()
for r in zip(df.index, df['a'], df['b']):
test_list.append((r[0], r[1], r[2]))
time_stat.append(time.time()-t)
# izip
test_list = []
t = time.time()
from itertools import izip
for r in izip(df.index, df['a'], df['b']):
test_list.append((r[0], r[1], r[2]))
time_stat.append(time.time()-t)
time_df = pd.DataFrame({'items':['range(index)', 'enumerate', 'iterrows', 'itertuples' , 'zip', 'izip'], 'time':time_stat})
time_df.sort_values('time')
items time
5 izip 0.034869
4 zip 0.040440
3 itertuples 0.072604
1 enumerate 0.174094
2 iterrows 4.026293
0 range(index) 21.921407
可以发现在时间花销上, izip > zip > itertuples > enumerate > iterrows > range(index)
【跟着stackoverflow学Pandas】How to iterate over rows in a DataFrame in Pandas-DataFrame按行迭代的更多相关文章
- 【跟着stackoverflow学Pandas】 - Adding new column to existing DataFrame in Python pandas - Pandas 添加列
最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...
- 【跟着stackoverflow学Pandas】 -Get list from pandas DataFrame column headers - Pandas 获取列名
最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...
- 【跟着stackoverflow学Pandas】add one row in a pandas.DataFrame -DataFrame添加行
最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...
- 【跟着stackoverflow学Pandas】Select rows from a DataFrame based on values in a column -pandas 筛选
最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...
- 【跟着stackoverflow学Pandas】“Large data” work flows using pandas-pandas大数据处理流程
最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...
- 【跟着stackoverflow学Pandas】Delete column from pandas DataFrame-删除列
最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...
- 【跟着stackoverflow学Pandas】Renaming columns in pandas-列的重命名
最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...
- 学机器学习,不会数据处理怎么行?—— 二、Pandas详解
在上篇文章学机器学习,不会数据处理怎么行?—— 一.NumPy详解中,介绍了NumPy的一些基本内容,以及使用方法,在这篇文章中,将接着介绍另一模块——Pandas.(本文所用代码在这里) Panda ...
- 跟着百度学PHP[14]-PDO之Mysql的事务处理2
前面所将仅仅是在纯mysql下的讲解,这节就是要将其搬到PDO台面上来了. 将自动提交关闭. SetAttribute下有一个PDO::ATTR_AUTOCOMMIT 将其设置为0即可关闭,如:$pd ...
随机推荐
- python error: curl: (1) Protocol "'https" not supported or disabled in libcurl
python 调用curl访问一个网页时,出现error: curl: (1) Protocol "'https" not supported or disabled in lib ...
- obtainBuffer timed out (is the CPU pegged?)
https://stackoverflow.com/questions/5293025/audiotrack-lag-obtainbuffer-timed-out [典] 03-13 14:55:57 ...
- unsigned short A = 10; printf("~A = %u\n", ~A); char c=128; printf("c=%d\n",c); 输出多少?
这是题目给出的答案:第一题,-A =0xfffffff5,int值 为-11,但输出的是uint.所以输出4294967285 第二题,c=0x10,输出的是int,最高位为1,是负数,所以它的值就是 ...
- @component的注解
1.@controller 控制器(注入服务) 2.@service 服务(注入dao) 3.@repository dao(实现dao访问) 4.@component (把普通pojo实例化到spr ...
- 01_HBase概述
1. HBase在Hadoop生态圈中的位置 问题:HBase 是什么,用在哪里,解决什么样的问题? 解答: 1)简单来说, HBase 是一种类似于面向列的分布式数据库(集群), 底层利用HDFS ...
- Linux内核、 TCP/IP、Socket参数调优
/proc/sys/net目录 所有的TCP/IP参数都位于/proc/sys/net目录下(请注意,对/proc/sys/net目录下内容的修改都是临时的,任何修改在系统重启后都会丢失),例如下面这 ...
- sonar总结--
maven的setting.xml 配置 https://www.cnblogs.com/javawebsoa/p/3206504.html
- Nordic官方网络资源介绍(官网/devzone/GitHub)
本文将介绍Nordic官方网络资源,包括Nordic官网,开发者论坛(devzone),以及Nordic在GitHub上的共享资源. 1. Nordic官网(产品/SDK/工具/文档库) Nordic ...
- 基于事件的 JavaScript 编程:异步与同
JavaScript的优势之一是其如何处理异步代码.异步代码会被放入一个事件队列,等到所有其他代码执行后才进行,而不会阻塞线程.然而,对于初学者来说,书写异步代码可能会比较困难.而在这篇文章里,我将会 ...
- css中pt、px、em、ex、in等这类长度单位详细说明
在CSS样式表中,我们经常会看到pt, px,em,ex,in等这类长度单位.它们各是什么意思,有什么区别呢? 在CSS样式表中,长度单位分两种: 相对长度单位,如px, em等 绝对长度单位,如pt ...