1176: [Balkan2007]Mokia

Time Limit: 30 Sec  Memory Limit: 162 MB
Submit: 1854  Solved: 821
[Submit][Status][Discuss]

Description

维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000.

Input

第一行两个整数,S,W;其中S为矩阵初始值;W为矩阵大小

接下来每行为一下三种输入之一(不包含引号):

"1 x y a"

"2 x1 y1 x2 y2"

"3"

输入1:你需要把(x,y)(第x行第y列)的格子权值增加a

输入2:你需要求出以左上角为(x1,y1),右下角为(x2,y2)的矩阵内所有格子的权值和,并输出

输入3:表示输入结束

Output

对于每个输入2,输出一行,即输入2的答案

Sample Input

0 4
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3

Sample Output

3
5

HINT

保证答案不会超过int范围

Solution  

CDQ分治+树状数组裸题,矩阵分成四个点统计,单点更新。

Code

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream> using namespace std; const int maxn = ;
const int maxm = +;
int s, w, ans[maxm];
struct Node
{
int op, id, x, y, k, to;
Node (int op = , int id = , int x = , int y = , int k = , int to = ):
op(op), id(id), x(x), y(y), k(k), to(to) {}
bool operator < (const Node &AI) const
{
if (x == AI.x && y == AI.y)
return op < AI.op;
if (x == AI.x)
return y < AI.y;
return x < AI.x;
}
}q[maxm], temp[maxm];
struct BIT
{
int c[maxn+];
int lowbit(int x)
{
return x & -x;
}
void update(int x, int d)
{
while (x <= w)
{
c[x] += d;
x += lowbit(x);
}
}
int query(int x)
{
int ret = ;
while (x > )
{
ret += c[x];
x -= lowbit(x);
}
return ret;
}
}T; void cdq(int l, int r)
{
if (l == r)
return ;
int mid = (l+r)>>;
for (int i = l; i <= r; ++i)
{
if (q[i].id <= mid && q[i].op == )
T.update(q[i].y, q[i].k);
if (q[i].id > mid && q[i].op == )
ans[q[i].to] += q[i].k*T.query(q[i].y);
}
for (int i = l; i <= r; ++i)
if (q[i].id <= mid && q[i].op == )
T.update(q[i].y, -q[i].k);
int t1 = l-, t2 = mid;
for (int i = l; i <= r; ++i)
if (q[i].id <= mid)
temp[++t1] = q[i];
else
temp[++t2] = q[i];
for (int i = l; i <= r; ++i)
q[i] = temp[i];
cdq(l, mid), cdq(mid+, r);
} int main()
{
scanf("%d %d", &s, &w);
w += ;
int oper, cnt = , cnt_2 = ;
while (~scanf("%d", &oper) && oper != )
{
if (oper == )
{
int x, y, d;
scanf("%d %d %d", &x, &y, &d);
x += , y += ;
q[++cnt] = Node(, cnt, x, y, d, );
}
else
{
int x1, y1, x2, y2;
scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
x1 += , y1 += , x2 += , y2 += ;
cnt_2 ++;
ans[cnt_2] = s*(x2-x1+)*(y2-y1+);
q[++cnt] = Node(, cnt, x2, y2, , cnt_2);
q[++cnt] = Node(, cnt, x1-, y2, -, cnt_2);
q[++cnt] = Node(, cnt, x2, y1-, -, cnt_2);
q[++cnt] = Node(, cnt, x1-, y1-, , cnt_2);
}
}
sort(q+, q+cnt+);
cdq(, cnt);
for (int i = ; i <= cnt_2; ++i)
printf("%d\n", ans[i]);
return ;
}

  

BZOJ 1176 Mokia CDQ分治+树状数组的更多相关文章

  1. BZOJ 1176: [Balkan2007]Mokia( CDQ分治 + 树状数组 )

    考虑cdq分治, 对于[l, r)递归[l, m), [m, r); 然后计算[l, m)的操作对[m, r)中询问的影响就可以了. 具体就是差分答案+排序+离散化然后树状数组维护.操作数为M的话时间 ...

  2. bzoj 3262 陌上花开 - CDQ分治 - 树状数组

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...

  3. BZOJ 2683 简单题 cdq分治+树状数组

    题意:链接 **方法:**cdq分治+树状数组 解析: 首先对于这道题,看了范围之后.二维的数据结构是显然不能过的.于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好 ...

  4. 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组

    [BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...

  5. 【bzoj3262】陌上花开 CDQ分治+树状数组

    题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...

  6. 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组

    题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...

  7. LOJ3146 APIO2019路灯(cdq分治+树状数组)

    每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...

  8. BZOJ 4553 [Tjoi2016&Heoi2016]序列 ——CDQ分治 树状数组

    考虑答案的构成,发现是一个有限制条件的偏序问题. 然后三个维度的DP,可以排序.CDQ.树状数组各解决一维. #include <map> #include <cmath> # ...

  9. BZOJ1176---[Balkan2007]Mokia (CDQ分治 + 树状数组)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1176 CDQ第一题,warush了好久.. CDQ分治推荐论文: 1 <从<C ...

随机推荐

  1. ubuntu永久修改主机名

    1.查看主机名 在Ubuntu系统中,快速查看主机名有多种方法:其一,打开一个GNOME终端窗口,在命令提示符中可以看到主机名,主机名通常位于“@”符号后:其二,在终端窗口中输入命令:hostname ...

  2. PHP文本式留言板——php经典实例

    文件结构: index.php 主页和添加页 show.php 查看留言页 ly.db 文本保存页 doAdd.php 添加功能页 doDel.php 删除功能页  index.php <htm ...

  3. CTF线下赛AWD套路小结

    近打了2场CTF线下赛,把AWD模式中的一些小套路做一些总结,本人web狗,二进制部分就不班门弄斧了. 一. AWD模式简介 AWD:Attack With Defence,比赛中每个队伍维护多台服务 ...

  4. python基础===用9种方式生成新的对象

    class Point: def __init__(self, x, y): self.x = x self.y = y point1 = Point(1, 2) point2 = eval(&quo ...

  5. 174.Dungeon Game---dp

    题目链接 题目大意:从左上角到右下角,每一个格子都有各自的权值,如果权值为负,则当到达时,要失血:如果权值为正,则当到达时,要加血.当到达某个格子时,当前血量<=0,则死亡,到达不了右下角,所以 ...

  6. HDU 6198 2017沈阳网络赛 线形递推

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6198 题意:给出一个数k,问用k个斐波那契数相加,得不到的数最小是几. 解法:先暴力打表看看有没有规律 ...

  7. TCP 建立的3次握手, 和关闭的4次握手

    TCP/IP 寻址 TCP/IP 使用 32 个比特或者 4 个 0 到 255 之间的数字来为计算机编址. TCP/IP 连接 用S(service) 代表服务端, C(client) 代表客户端 ...

  8. python实现链式调用

    在python中实现链式调用只需在函数返回对象自己就行了. class Person: def name(self, name): self.name = name return self def a ...

  9. 自定义事件的触发dispatchEvent

    1. 对于标准浏览器,其提供了可供元素触发的方法:element.dispatchEvent(). 不过,在使用该方法之前,我们还需要做其他两件事,及创建和初始化.因此,总结说来就是: documen ...

  10. 让R与Python共舞

    转载:http://ices01.sinaapp.com/?p=129      R(又称R语言)是一款开源的跨平台的数值统计和数值图形化展现 工具.通俗点说,R是用来做统计和画图的.R拥有自己的脚本 ...