1176: [Balkan2007]Mokia

Time Limit: 30 Sec  Memory Limit: 162 MB
Submit: 1854  Solved: 821
[Submit][Status][Discuss]

Description

维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000.

Input

第一行两个整数,S,W;其中S为矩阵初始值;W为矩阵大小

接下来每行为一下三种输入之一(不包含引号):

"1 x y a"

"2 x1 y1 x2 y2"

"3"

输入1:你需要把(x,y)(第x行第y列)的格子权值增加a

输入2:你需要求出以左上角为(x1,y1),右下角为(x2,y2)的矩阵内所有格子的权值和,并输出

输入3:表示输入结束

Output

对于每个输入2,输出一行,即输入2的答案

Sample Input

0 4
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3

Sample Output

3
5

HINT

保证答案不会超过int范围

Solution  

CDQ分治+树状数组裸题,矩阵分成四个点统计,单点更新。

Code

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream> using namespace std; const int maxn = ;
const int maxm = +;
int s, w, ans[maxm];
struct Node
{
int op, id, x, y, k, to;
Node (int op = , int id = , int x = , int y = , int k = , int to = ):
op(op), id(id), x(x), y(y), k(k), to(to) {}
bool operator < (const Node &AI) const
{
if (x == AI.x && y == AI.y)
return op < AI.op;
if (x == AI.x)
return y < AI.y;
return x < AI.x;
}
}q[maxm], temp[maxm];
struct BIT
{
int c[maxn+];
int lowbit(int x)
{
return x & -x;
}
void update(int x, int d)
{
while (x <= w)
{
c[x] += d;
x += lowbit(x);
}
}
int query(int x)
{
int ret = ;
while (x > )
{
ret += c[x];
x -= lowbit(x);
}
return ret;
}
}T; void cdq(int l, int r)
{
if (l == r)
return ;
int mid = (l+r)>>;
for (int i = l; i <= r; ++i)
{
if (q[i].id <= mid && q[i].op == )
T.update(q[i].y, q[i].k);
if (q[i].id > mid && q[i].op == )
ans[q[i].to] += q[i].k*T.query(q[i].y);
}
for (int i = l; i <= r; ++i)
if (q[i].id <= mid && q[i].op == )
T.update(q[i].y, -q[i].k);
int t1 = l-, t2 = mid;
for (int i = l; i <= r; ++i)
if (q[i].id <= mid)
temp[++t1] = q[i];
else
temp[++t2] = q[i];
for (int i = l; i <= r; ++i)
q[i] = temp[i];
cdq(l, mid), cdq(mid+, r);
} int main()
{
scanf("%d %d", &s, &w);
w += ;
int oper, cnt = , cnt_2 = ;
while (~scanf("%d", &oper) && oper != )
{
if (oper == )
{
int x, y, d;
scanf("%d %d %d", &x, &y, &d);
x += , y += ;
q[++cnt] = Node(, cnt, x, y, d, );
}
else
{
int x1, y1, x2, y2;
scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
x1 += , y1 += , x2 += , y2 += ;
cnt_2 ++;
ans[cnt_2] = s*(x2-x1+)*(y2-y1+);
q[++cnt] = Node(, cnt, x2, y2, , cnt_2);
q[++cnt] = Node(, cnt, x1-, y2, -, cnt_2);
q[++cnt] = Node(, cnt, x2, y1-, -, cnt_2);
q[++cnt] = Node(, cnt, x1-, y1-, , cnt_2);
}
}
sort(q+, q+cnt+);
cdq(, cnt);
for (int i = ; i <= cnt_2; ++i)
printf("%d\n", ans[i]);
return ;
}

  

BZOJ 1176 Mokia CDQ分治+树状数组的更多相关文章

  1. BZOJ 1176: [Balkan2007]Mokia( CDQ分治 + 树状数组 )

    考虑cdq分治, 对于[l, r)递归[l, m), [m, r); 然后计算[l, m)的操作对[m, r)中询问的影响就可以了. 具体就是差分答案+排序+离散化然后树状数组维护.操作数为M的话时间 ...

  2. bzoj 3262 陌上花开 - CDQ分治 - 树状数组

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...

  3. BZOJ 2683 简单题 cdq分治+树状数组

    题意:链接 **方法:**cdq分治+树状数组 解析: 首先对于这道题,看了范围之后.二维的数据结构是显然不能过的.于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好 ...

  4. 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组

    [BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...

  5. 【bzoj3262】陌上花开 CDQ分治+树状数组

    题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...

  6. 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组

    题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...

  7. LOJ3146 APIO2019路灯(cdq分治+树状数组)

    每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...

  8. BZOJ 4553 [Tjoi2016&Heoi2016]序列 ——CDQ分治 树状数组

    考虑答案的构成,发现是一个有限制条件的偏序问题. 然后三个维度的DP,可以排序.CDQ.树状数组各解决一维. #include <map> #include <cmath> # ...

  9. BZOJ1176---[Balkan2007]Mokia (CDQ分治 + 树状数组)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1176 CDQ第一题,warush了好久.. CDQ分治推荐论文: 1 <从<C ...

随机推荐

  1. Web安全的三个攻防姿势

    原文地址:https://segmentfault.com/a/1190000011601837 作者: zwwill_木羽 关于Web安全的问题,是一个老生常谈的问题,作为离用户最近的一层,我们大前 ...

  2. 海洋CMS v6.53 v6.54命令执行

    测试下载地址:https://pan.baidu.com/s/1jHQBKFk 至于分析实在是看的一脸懵逼就不累赘了.直接上exp POST /haiyang/upload/search.php HT ...

  3. php-fpm性能优化

    PHP-fpm PHP-FPM是一个PHPFastCGI管理器,是只用于php的. php-fpm 已经在 Linux.MacOSX.Solaris 和 FreeBSD 上测试通过. 确信 libxm ...

  4. LDA线性判别分析

    LDA线性判别分析 给定训练集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能的近,异类样例点尽可能的远,对新样本进行分类的时候,将新样本同样的投影,再根据投影得到的位置进行判断,这个新样本的 ...

  5. 64_n2

    nodejs-from-0.1.3-4.fc26.noarch.rpm 11-Feb-2017 15:01 9982 nodejs-from2-2.1.0-6.fc26.noarch.rpm 11-F ...

  6. 一起来学redis(一)

    redis是一个开源的,高性能的,基于键值对的缓存与存储系统通过提供多种键值数据类型来适应不同场景下的缓存与存储需求. 同时redis的诸多高层级功能使其可以胜任消息队列,任务队列等不同的角色. 特性 ...

  7. Java network programming-guessing game

    猜数字游戏 游戏的规则如下: 当客户端第一次连接到服务器端时,服务器端生产一个[0,50]之间的随机数字,然后客户端输入数字来猜该数字,每次客户端输入数字以后,发送给服务器端,服务器端判断该客户端发送 ...

  8. 无状态Http

    无状态的根本原因 浏览器和服务器使用socket通信,服务器将请求结果返回给浏览器后,会关闭当前socket连接.而且服务器会在处理页面完毕后销毁页面对象. 应用层面的原因 浏览器和服务器之间通信都遵 ...

  9. MemCached缓存操作

    Web项目在运行时,通常需要从数据库中进行读写.随着操作数据量的增大,以及访问量的集中,数据库的负载增加,数据库响应变慢,网站访问速度变慢的情况.Memcached就是用来解决这些问题的. Memca ...

  10. C# 6.0 新特性 (一)

    概述 尽管 C# 6.0 尚未完成,但现在这些功能正处于接近完成的关键时刻.自 2014 年 5 月发布文章“C# 6.0 语言预览版”(msdn.microsoft.com/magazine/dn6 ...