题意:

有一块xi*Yi的矩形巧克力,Alice只允许垂直分割巧克力,Bob只允许水平分割巧克力。具体来说,对于Alice,一块巧克力X i * Y i,只能分解成a * Y i和b * Y i其中a + b = X i和a, b > 0。对于Bob,一块巧克力X i * Y i,只能分解成X i * a和X i * b其中a + b = Y i和a ,b > 0。(每次切割只能以整数单位来切,例如一个宽为3的巧克力,你垂直切只能切成一个1,2而不能切成两个1.5)

谁最后不能操作了,谁就输了

题解:

根据题意我们只需要找到在给出的巧克力中他们两个人能走的最大步数,然后对比一下就可以了;但是另一个人的步数是和前一个人个操作有关

例如一个4*4的巧克力,如果每一次Alice都以1来切割(第一次1 3,第二次1 1 2,第三次1 1 1 1),这样的话Bob每一次切割宽为1的巧克力的话,他一共能走3*4=12步。但是如果每次Alice按照总宽度的一半来切割的话,那么Alice还是走4步(先切成2 2,然后再找每一个2来切),但是Bob就只能走2步

而且Alice肯定想让Bob走最小步数,因为Bob步数越大Alice就越难赢,所以每次Alice按照总宽度一半来切就是最优了

代码:

 1 //参考:https://blog.csdn.net/qq_34374664/article/details/52959986
2 #include <iostream>
3
4 #include <cstdio>
5
6 #include <cstring>
7
8 #include <algorithm>
9
10 using namespace std;
11
12 const int maxn = 1e9 + 7;
13
14 int main()
15
16 {
17
18 int x, y, n, t, Case = 0;
19
20 scanf("%d", &t);
21
22 while(t--)
23
24 {
25
26 long long ansx = 0, ansy = 0;
27
28 scanf("%d", &n);
29
30 for(int i = 1; i <= n; i++)
31
32 {
33
34 scanf("%d%d", &x, &y);
35
36 while(x > 1 && y > 1)
37
38 {
39
40 x /= 2;
41
42 y /= 2;
43
44 ansx++;
45
46 ansy++;
47
48 }
49
50 if(x == 1) ansy += y - 1;
51
52 if(y == 1) ansx += x - 1;
53
54 }
55
56 if(ansx <= ansy) printf("Case %d: Bob\n", ++Case);
57
58 else printf("Case %d: Alice\n", ++Case);
59
60
61
62 }
63
64
65
66
67
68 return 0;
69
70 }

POJ 2960 S-Nim题意:

给你n堆石子,你每次只能取一定数量的石子,这个一定数量每个样例第一行就会输入;谁最后不能取石子谁就输了

题解:

很明显的SG函数,把第一个样例讲一下

2 2 5   //第一个数是k,后面输入k个数,每个数就是限制你每次只能取多少石子
3         //下面有多少行询问
2 5 12      //第一个数就是有多少堆石子,后面就是每一堆石子的数量
3 2 4 7
4 2 3 7 12

对于5 12 这两堆石子我们可以向尼姆博弈一样先处理一堆石子,之后再让它们相互异或

SG(0)=0   //初始化

SG(1)=0

SG(2)=mex{SG(0)}=1

SG(3)=mex{SG(1)}=1

SG(4)=mex{SG(2)}=0

SG(5)=mex{SG(0),SG(3)}=2

SG(6)=mex{SG(1),SG(4)}=1

SG(7)=mex{SG(2),SG(5)}=0

SG(8)=mex{SG(6),SG(3)}=0

SG(9)=mex{SG(7),SG(4)}=1

SG(10)=mex{SG(8),SG(5)}=1

SG(11)=mex{SG(9),SG(6)}=0

SG(12)=mex{SG(10),SG(7)}=2

所以两堆石子的结果就是SG(5)^SG(12)=0,所以这个时候就输了

那么肯定是每一组样例先打表对SG函数预处理

代码:

 1 #include <iostream>
2 #include <cstdio>
3 #include <cmath>
4 #include <cstring>
5 #include <algorithm>
6 using namespace std;
7 #pragma comment(linker, "/STACK:102400000,102400000")
8 #define ls i<<1
9 #define rs ls | 1
10 #define mid ((ll+rr)>>1)
11 #define pii pair<int,int>
12 #define MP make_pair
13 typedef long long LL;
14 const long long INF = 1e18+1LL;
15 const double Pi = acos(-1.0);
16 const int N = 5e5+10, M = 2e5+20, mod = 1e9+7, inf = 2e9;
17
18 int k,sg[N],s[N],vis[N];
19 char A[N];
20 int main() {
21 while(scanf("%d",&k)!=EOF) {
22 if(k == 0) break;
23 for(int i = 1; i <= k; ++i) scanf("%d",&s[i]);
24 sg[0] = 0;
25 for(int i = 1; i <= 10000; ++i) { //预处理打表找出SG的值
26 for(int j = 0; j <= 100; ++j) vis[j] = 0;
27 for(int j = 1; j <= k; ++j) {
28 if(i >= s[j] && sg[i - s[j]] <= 100) vis[sg[i - s[j]]] = 1; //这一步就是判断从这个点都能到哪
29 }
30 for(int j = 0; j <= 100; ++j) { //这一步相当于找不在mex中最小的值
31 if(!vis[j]) {
32 sg[i] = j;
33 break;
34 }
35 }
36 }
37 int q,cnt = 0;
38 scanf("%d",&q);
39 while(q--) {
40 int x,y,ans = 0;
41 scanf("%d",&x);
42 while(x--) {
43 scanf("%d",&y);
44 ans ^= sg[y]; //得到每一堆石子的SG值之后再异或处理就可以了
45 }
46 if(ans) printf("W");
47 else printf("L");
48 }
49 printf("\n");
50 }
51 return 0;
52 }

HDU3544 Alice's Game && POJ 2960 S-Nim(SG函数)的更多相关文章

  1. POJ 2960 S-Nim 博弈论 sg函数

    http://poj.org/problem?id=2960 sg函数几乎是模板题. 调试代码的最大障碍仍然是手残在循环里打错变量名,是时候换个hydra产的机械臂了[超想要.jpg] #includ ...

  2. poj 2960 S-Nim(SG函数)

    S-Nim Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3694   Accepted: 1936 Description ...

  3. poj 2960 S-Nim【SG函数】

    预处理出SG函数,然后像普通nim一样做即可 #include<iostream> #include<cstdio> using namespace std; const in ...

  4. hdu 3032 Nim or not Nim? sg函数 难度:0

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  5. S-Nim POJ - 2960 Nim + SG函数

    Code: #include<cstdio> #include<algorithm> #include<string> #include<cstring> ...

  6. poj 2960 S-Nim (SG)

    题意: K个数,s1...sk. m个状态,对于某一个状态,有L堆石子,每人每次取的石子个数只能是s1...sk的一个,且只能在一堆中取. 输出m个状态是先手胜还是先手败,先手胜输出W,否则输出L. ...

  7. HDU 3032 Nim or not Nim (sg函数)

    加强版的NIM游戏,多了一个操作,可以将一堆石子分成两堆非空的. 数据范围太大,打出sg表后找规律. # include <cstdio> # include <cstring> ...

  8. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  9. HDU 3032 Nim or not Nim?(sg函数)

    题目链接 暴力出来,竟然眼花了以为sg(i) = i啊....看表要认真啊!!! #include <cstdio> #include <cstring> #include & ...

随机推荐

  1. Centos 7 杂章

    CentOS-7-x86_64-DVD-2003.iso 下载地址: http://mirrors.aliyun.com/centos/7/isos/x86_64/CentOS-7-x86_64-DV ...

  2. Python基础语法5-控制流语句

  3. Java开发手册之异常日志

    1.捕获异常的时候,有一种特殊情况,就是方法体内部所抛出的并不是Exception而是Error,这个时候,上层方法捕获Exception就会失败.所以在某些场合需要捕获更高一级别的Throwable ...

  4. 【Oracle】查看哪些用户被授予了DBA权限

    查看哪些用户被授予了DBA权限 select * from dba_role_privs where granted_role='DBA'; 回收权限: revoke dba from xxx;

  5. Cloudera Manager添加主机节点

    为了监控方便,想把研发环境中的主机节点都纳入Cloudera Manager的管理中,这样在遇到问题时可方便的查看主机的硬件资源情况. 添加主机节点有多种方式,由于我是离线工作,所以选择rpm包的方式 ...

  6. Junit测试和反射

    Junit单元测试 测试分类 黑盒测试:不需要写代码,给输入值,看程序能否得到输出期望值. 白盒测试:需要些代码,关注程序具体的执行流程. Junit的使用 步骤 定义一个测试类(测试用例). 定义测 ...

  7. 数据分析——Numpy/pandas

    NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编 ...

  8. 从JAVA内存到垃圾回收,带你深入理解JVM

    摘要:学过Java的程序员对JVM应该并不陌生,如果你没有听过,没关系今天我带你走进JVM的世界.程序员为什么要学习JVM呢,其实不懂JVM也可以照样写出优质的代码,但是不懂JVM有可能别被面试官虐得 ...

  9. net.core.somaxconn net.ipv4.tcp_max_syn_backlog

    Linux参数-net.core.somaxconn与net.ipv4.tcp_max_syn_backlog_梁海江的博客-CSDN博客_net.ipv4.tcp_max_syn_backlog h ...

  10. git commit前检测husky与pre-commit 提交钩子

    git commit前检测husky与pre-commit git commit前检测husky与pre-commit - 简书 https://www.jianshu.com/p/f0d31f92b ...