HMM算法python实现
基础介绍,后5项为基础5元素
Q = ['q0', 'q1', 'q2', 'q3'] # 状态集合 States,共 N 种状态
V = ['v0', 'v1'] # 观测集合 Observations,共 M 种观测值
I = [ 'i{}'.format(i) for i in range(5) ] # 某个长度为 T 的状态序列,i_t 属于Q
O = [ 'o{}'.format(i) for i in range(5) ] # 状态序列对应的观测值序列,o_t 属于 V
A = [ a_ij ] # 转移概率 Transition Problity, a_ij = P( i_t+1 = q_j | i_t = q_i ) N*N
B = [ bj(o_t) ] # 发射概率 Emission Problity,b_ij = P( o_t = v_k | i_t = q_j ) N*M
Pi = [ P_i ] # 初识状态概率 P_i = P( i_1 = q_i )
基础5元素对应初始化
# Q = ['盒1', '盒2', '盒3']
Q = ['盒1', '盒2']
V = [ '红' , '黑' ]
# A = [ [ 0.2 , 0.3 , 0.5 ] ,
# [ 0 , 0.5 , 0.5 ] ,
# [ 0.4 , 0.2 , 0.2 ]]
A = [ [ 0.5 , 0.5 ] ,
[ 0.5 , 0.5 ]]
B = [ [ 0.3 , 0.7 ] ,
[ 0.5 , 0.5 ] ]
Pi = [ 0.5 , 0.5 ]
def label_2_id(target):
dt = { v:k for k,v in enumerate(V)}
return [ dt[item] for item in target ]
# target = label_2_id( ['红','红','黑','红'] )
target = label_2_id( ['红','红'] )
BruteForce暴力算法,计算复杂度:
# 路径展示角度
def brute_force_algorithm( target = [] ,path = '' ,prob ='' , pre = -1):
ret = []
path_tmp = ''
prob_tmp = ''
for k,v in enumerate(Q):
path_tmp = '{}/{}'.format(path , v)
if prob == '':
prob_tmp = '{}/{},{}'.format(prob , Pi[k] , B[k][target[0]] )
else:
prob_tmp = '{}/{},{}'.format( prob , A[pre][k] , B[k][target[0]] )
if len(target) > 1:
tmp = brute_force_algorithm(target[1:] , path_tmp ,prob_tmp , pre = k )
ret.extend( tmp )
elif len(target) == 1:
ret.append([path_tmp , prob_tmp])
return ret
# 总概率展示角度
def brute_force_algorithm( target = [] ,path = '' ,prob = 0 , pre = -1):
ret = 0
for k,v in enumerate(Q):
prob_tmp = prob
path_tmp = '{}/{}'.format(path , v)
if pre == -1 :
prob_tmp += Pi[k] * B[k][target[0]] # joint 联合概率局部
else:
prob_tmp *= A[pre][k] * B[k][target[0]]
if len(target) > 1:
ret += brute_force_algorithm(target[1:] , path_tmp ,prob_tmp , pre = k )
elif len(target) == 1:
ret += prob_tmp
return ret
Forward 前向算法,时间复杂度:
def forward_algorithm( target = [] ):
prob = [ [ 0 for i in Q] for j in target ]
for t ,o in enumerate(target):
if t == 0 :
for i in range( len(Q) ):
prob[0][i] = Pi[i] * B[i][o]
else:
for id , q in enumerate(Q):
for k,v in enumerate(prob[t-1]):
print( v , A[k][id] , prob , prob[t][id] )
prob[t][id] += (v * A[k][id] * B[id][o] )
print(prob)
return prob
Backend后向算法,计算复杂度:
def backend_algorithm( target = [] ):
prob = [ [ 0.0 for i in Q] for j in target ]
length = len(target)
for t in range( length-1 , -1 , -1):
if t == length-1 :
for i in range( len(Q) ): # 后向计算有点问题
prob[t][i] = 1
else:
o = target[t+1]
for id , q in enumerate(Q):
if t == 0:
for k,v in enumerate(prob[t+1]):
prob[t][id] *= 1000
prob[t][id] += ( v * A[id][k] * B[k][o] ) * 1000
prob[t][id] /= 1000
else:
for k,v in enumerate(prob[t+1]):
prob[t][id] += v * A[id][k] * B[k][o]
for k,v in enumerate(prob[0]):
prob[0][k] = v * Pi[k] * B[k][target[0]]
return prob
HMM算法python实现的更多相关文章
- pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...
- 常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ...
- kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- Math_Music
查看代码 #REmoo的优化任务 #1.公式写在<formula_set>类中,统一管理 --- Finished 2022.8.15 12:39 #2.建立<sample_set& ...
- 完全解析Array.apply(null, { length: 1000 })
Array.apply(null, { length: 1000 }) 点击打开视频讲解更加详细 在阅读VueJS教程时有这么段demo code: render: function (createE ...
- KingbaseES 缺少库文件问题
在工作中大家经常会遇到找不到某个so 的问题,这类可能是so文件缺失,或者是由于LD_LIBRARY_PATH 环境变量设置不当的原因. 1.库文件 我们通常把一些公用函数制作成函数库,供其它程序使用 ...
- VSCODE 配置远程调试环境
以下内容为本人的著作,如需要转载,请声明原文链接微信公众号「englyf」https://www.cnblogs.com/englyf/p/16691460.html 我的需求是,在Windows桌面 ...
- [Python]-os模块-文件读取
import os 在Python中,os模块用来处理文件路径,比较方便. os读取文件 在读取文件过程中,最常用的几个功能如下: os.listdir() 获取此目录下的所有目录名,并且存为列表.在 ...
- Django CSRF验证失败. 请求被中断.
当页面中form使用POST方式向后台提交时,报如下错误: 禁止访问 (403) CSRF验证失败. 请求被中断. Help Reason given for failure: CSRF toke ...
- ProxySQL 匹配规则
现实中很多场景要求更新数据能立马查到数据,而主从同步在这方面无解,所以从规则上修改,一些需要及时查询的语句在主上. # 用户登录 mysql -h192.168.0.103 -P16032 -urad ...
- 8. 使用Fluentd+MongoDB采集Apache日志
Fluentd+MongoDB,用以实时收集半结构化数据. 背景知识 日志接入Fluentd后,会以json的格式在Fluentd内部进行路由.这就决定了Fluentd处理日志的方式是非常灵活的,它将 ...
- gin项目部署到服务器并后台启动
前言 我们写好的gin项目想要部署在服务器上,我们应该怎么做呢,接下来我会详细的讲解一下部署教程. 1.首先我们要有一台虚拟机,虚拟机上安装好go框架. 2.将写好的项目上传到虚拟机上. 3.下载好项 ...
- LinkedBlockingQueue详解
LinkedBlockingQueue介绍 [1]LinkedBlockingQueue是一个基于链表实现的阻塞队列,默认情况下,该阻塞队列的大小为Integer.MAX_VALUE,由于这个数值特别 ...