HMM算法python实现
基础介绍,后5项为基础5元素
Q = ['q0', 'q1', 'q2', 'q3'] # 状态集合 States,共 N 种状态
V = ['v0', 'v1'] # 观测集合 Observations,共 M 种观测值
I = [ 'i{}'.format(i) for i in range(5) ] # 某个长度为 T 的状态序列,i_t 属于Q
O = [ 'o{}'.format(i) for i in range(5) ] # 状态序列对应的观测值序列,o_t 属于 V
A = [ a_ij ] # 转移概率 Transition Problity, a_ij = P( i_t+1 = q_j | i_t = q_i ) N*N
B = [ bj(o_t) ] # 发射概率 Emission Problity,b_ij = P( o_t = v_k | i_t = q_j ) N*M
Pi = [ P_i ] # 初识状态概率 P_i = P( i_1 = q_i )
基础5元素对应初始化
# Q = ['盒1', '盒2', '盒3']
Q = ['盒1', '盒2']
V = [ '红' , '黑' ]
# A = [ [ 0.2 , 0.3 , 0.5 ] ,
# [ 0 , 0.5 , 0.5 ] ,
# [ 0.4 , 0.2 , 0.2 ]]
A = [ [ 0.5 , 0.5 ] ,
[ 0.5 , 0.5 ]]
B = [ [ 0.3 , 0.7 ] ,
[ 0.5 , 0.5 ] ]
Pi = [ 0.5 , 0.5 ]
def label_2_id(target):
dt = { v:k for k,v in enumerate(V)}
return [ dt[item] for item in target ]
# target = label_2_id( ['红','红','黑','红'] )
target = label_2_id( ['红','红'] )
BruteForce暴力算法,计算复杂度:
# 路径展示角度
def brute_force_algorithm( target = [] ,path = '' ,prob ='' , pre = -1):
ret = []
path_tmp = ''
prob_tmp = ''
for k,v in enumerate(Q):
path_tmp = '{}/{}'.format(path , v)
if prob == '':
prob_tmp = '{}/{},{}'.format(prob , Pi[k] , B[k][target[0]] )
else:
prob_tmp = '{}/{},{}'.format( prob , A[pre][k] , B[k][target[0]] )
if len(target) > 1:
tmp = brute_force_algorithm(target[1:] , path_tmp ,prob_tmp , pre = k )
ret.extend( tmp )
elif len(target) == 1:
ret.append([path_tmp , prob_tmp])
return ret
# 总概率展示角度
def brute_force_algorithm( target = [] ,path = '' ,prob = 0 , pre = -1):
ret = 0
for k,v in enumerate(Q):
prob_tmp = prob
path_tmp = '{}/{}'.format(path , v)
if pre == -1 :
prob_tmp += Pi[k] * B[k][target[0]] # joint 联合概率局部
else:
prob_tmp *= A[pre][k] * B[k][target[0]]
if len(target) > 1:
ret += brute_force_algorithm(target[1:] , path_tmp ,prob_tmp , pre = k )
elif len(target) == 1:
ret += prob_tmp
return ret
Forward 前向算法,时间复杂度:
def forward_algorithm( target = [] ):
prob = [ [ 0 for i in Q] for j in target ]
for t ,o in enumerate(target):
if t == 0 :
for i in range( len(Q) ):
prob[0][i] = Pi[i] * B[i][o]
else:
for id , q in enumerate(Q):
for k,v in enumerate(prob[t-1]):
print( v , A[k][id] , prob , prob[t][id] )
prob[t][id] += (v * A[k][id] * B[id][o] )
print(prob)
return prob
Backend后向算法,计算复杂度:
def backend_algorithm( target = [] ):
prob = [ [ 0.0 for i in Q] for j in target ]
length = len(target)
for t in range( length-1 , -1 , -1):
if t == length-1 :
for i in range( len(Q) ): # 后向计算有点问题
prob[t][i] = 1
else:
o = target[t+1]
for id , q in enumerate(Q):
if t == 0:
for k,v in enumerate(prob[t+1]):
prob[t][id] *= 1000
prob[t][id] += ( v * A[id][k] * B[k][o] ) * 1000
prob[t][id] /= 1000
else:
for k,v in enumerate(prob[t+1]):
prob[t][id] += v * A[id][k] * B[k][o]
for k,v in enumerate(prob[0]):
prob[0][k] = v * Pi[k] * B[k][target[0]]
return prob
HMM算法python实现的更多相关文章
- pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...
- 常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ...
- kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- 【Prometheus+Grafana系列】监控MySQL服务
前言 前面的一篇文章已经介绍了 docker-compose 搭建 Prometheus + Grafana 服务.当时实现了监控服务器指标数据,是通过 node_exporter.Prometheu ...
- javaee相关基础
2020-2-28 java 学习 开始学习javaee了 瞎跳着看 今日内容 web相关概念 web服务器软件:Tomcat Servlet入门学习 web概念 软件架构 C/S:客户端/服务器端 ...
- python 二分法查找字典中指定项第一次出现的索引
import time #引入time库,后续计算时间. inform_m = {} #创建母字典 inform_s = {} #母字典下嵌套的子字典 #给母字典添加键-值 for i in rang ...
- Linux有趣命令
通外网 下载使用阿里云镜像源:wget -O /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.re ...
- API接口签名校验(C#版)
我们在提供API服务的时候,为了防止数据传输过程被篡改,通常的做法是对传输的内容进行摘要签名,把签名串同参数一起请求API,API服务接收到请求后以同样的方式生成签名串,然后进行对比,如果签名串不一致 ...
- fastadmin后台分页设置显示方法
1.参照日志列表的分页(后台代码都有) 2.修改默认分页配置,在初始化里面加上: pageList: [5,10,'all'], 3.显示列表: [$where, $sort, $order, $ ...
- centOS查看修改时区
// 查看时间各种状态,查看时区等 timedatectl // 输出 Local time: 四 2014-12-25 10:52:10 CST Universal time: 四 2014-12- ...
- vue3 的 ref、isRef、toRef、toRefs、toRaw 详细介绍
ref.isRef.toRef.toRefs.toRaw 看着一堆类似的东西,一个头两个大,今天整理一篇文章详细介绍它们的功能及区别. 1.ref ref 属性除了能够获取元素外,也可以使用 ref ...
- 重要参考步骤---ProxySQL Cluster 集群搭建步骤
环境 proxysql-1:192.168.20.202 proxysql-2:192.168.20.203 均采用yum方式安装 # cat <<EOF | tee /etc/yum.r ...
- es日志配置,只保存最近3天的日志
Elasticsearch使用Log4j 2进行日志记录.可以使用log4j2.properties文件配置Log4j2. Elasticsearch公开三个属性 ${sys:es.logs.base ...