「 poj 2096 」 Collecting Bugs
先说一下题意
$s$ 个子系统还中有 $n$ 种 $\text{bug}$,每天可以随机选择一种 $\text{bug}$,问选出 $n$ 种 $\text{bug}$ 在 $s$ 种子系统中的期望天数。
解题思路
不妨设 $dp[i][j]$ 表示在选择 $i$ 种 $\text{bug}$,$j$ 种子系统的期望天数。
那么新选择的 $\text{bug}$ 就会出现一下四种情况
- 新发现的 $\text{bug}$ 在已经发现的 $i$ 种 $\text{bug}$中,已经发现的 $j$ 个子系统中,概率是 $p1=\frac{i}{n} \times \frac{j}{s}$
- 新发现的 $\text{bug}$ 在已经发现的 $i$ 种 $\text{bug}$中,但却在新的子系统里,概率是 $p2=\frac{i}{n} \times \frac{s-j}{s}$
- 新发现的 $\text{bug}$ 是新的 $\text{bug}$,但却在已经发现的子系统里,概率是 $p3=\frac{n-i}{n} \times \frac{j}{s}$
- 新发现的 $\text{bug}$ 是新的 $\text{bug}$,也在新的子系统中,概率是 $p4=\frac{n-i}{n} \times \frac{s-j}{s}$
稍微推一下就能够得到状态转移方程。
附上代码
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int n, s;
double dp[][], p1, p2, p3, p4;
int main() {
while (scanf("%d%d", &n, &s) == ) {
memset(dp, , sizeof(dp));
for(int i=n; i>=; i--) {
for(int j=s; j>=; j--) {
if(i == n && j == s) continue;
p1 = 1.0 * i/n * j/s;
p2 = 1.0 * i/n * (s-j)/s;
p3 = 1.0 * (n-i)/n * j/s;
p4 = 1.0 * (n-i)/n * (s-j)/s;
dp[i][j] = (dp[i][j+]*p2 + dp[i+][j]*p3 + dp[i+][j+]*p4 + 1.0) / (1.0-p1);
}
}
printf("%.4lf\n", dp[][]);
}
}
「 poj 2096 」 Collecting Bugs的更多相关文章
- 【POJ 2096】 Collecting Bugs
[题目链接] http://poj.org/problem?id=2096 [算法] 概率DP [代码] #include <algorithm> #include <bitset& ...
- 【POJ 2096】Collecting Bugs 概率期望dp
题意 有s个系统,n种bug,小明每天找出一个bug,可能是任意一个系统的,可能是任意一种bug,即是某一系统的bug概率是1/s,是某一种bug概率是1/n. 求他找到s个系统的bug,n种bug, ...
- 「专题训练」Collecting Bugs(POJ-2096)
题意与分析 题意大致是这样的:给定一个\(n\times s\)的矩阵,每次可以随机的在这个矩阵内给一个格子染色(染过色的仍然可能被选中),问每一行和每一列都有格子被染色的次数的期望. 这题如果从概率 ...
- 「POJ 3666」Making the Grade 题解(两种做法)
0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...
- 【POJ】【2096】Collecting Bugs
概率DP/数学期望 kuangbin总结中的第二题 大概题意:有n个子系统,s种bug,每次找出一个bug,这个bug属于第 i 个子系统的概率为1/n,是第 j 种bug的概率是1/s,问在每个子系 ...
- 「POJ Challenge」生日礼物
Tag 堆,贪心,链表 Solution 把连续的符号相同的数缩成一个数,去掉两端的非正数,得到一个正负交替的序列,把该序列中所有数的绝对值扔进堆中,用所有正数的和减去一个最小值,这个最小值的求法与「 ...
- 「POJ 3268」Silver Cow Party
更好的阅读体验 Portal Portal1: POJ Portal2: Luogu Description One cow from each of N farms \((1 \le N \le 1 ...
- 「POJ 1135」Domino Effect(dfs)
BUPT 2017 Summer Training (for 16) #3G 题意 摆好的多米诺牌中有n个关键牌,两个关键牌之间有边代表它们之间有一排多米诺牌.从1号关键牌开始推倒,问最后倒下的牌在哪 ...
- 「POJ - 1003」Hangover
BUPT 2017 summer training (16) #2C 题意 n个卡片可以支撑住的长度是1/2+1/3+1/4+..+1/(n+1)个卡片长度.现在给出需要达到总长度,求最小的n. 题解 ...
随机推荐
- (转)web会话管理方式
阅读目录 1. 基于server端session的管理 2. cookie-based的管理方式 3. token-based的管理方式 4. 安全问题 5. 总结 http是无状态的,一次请求结束, ...
- 【OI新闻】2016.10.26 - NOIP初赛泄题再次引爆
有点劲,开车注意点,小心翻啦~ http://www.noi.cn/noi-news/noi/743-ccfnoip2016 CCF在NOIP2016初赛结束后接到举报:初赛前(22日12时左右),网 ...
- 洛谷 P1131 [ ZJOI 2007 ] 时态同步 —— 树形DP
题目:https://www.luogu.org/problemnew/show/P1131 记录 x 子树内同步的时间 f[x],同步所需代价 g[x]: 直接转移即可,让该儿子子树与其它儿子同步, ...
- 02_cfork分叉进程
fork函数.调用它就可以在当前的进程当中给它分叉出一个新的进程.分叉出的进程就可以看看它有什么特点?
- HDU 2544 最短路 (Floyd)
题意:略. 析:由于 n 比较小,所以我们可以用Floyd,完全不会超时. 代码如下: #pragma comment(linker, "/STACK:1024000000,10240000 ...
- PCB 2019年IT工作主题【降本增效】 词云
降本增效是IT部门永恒的主题,从自身做起.踏踏实实把工作做好 在线词云制作软件: https://wordart.com/create
- Spring中AOP的两种代理方式(Java动态代理和CGLIB代理-转载
内容是摘抄的,不知最初的原作者,见谅 Java 动态代理.具体有如下四步骤: 通过实现 InvocationHandler 接口创建自己的调用处理器: 通过为 Proxy 类指定 ClassLoade ...
- linux centos7安装mysql
1.下载并安装官方的 yum repository (新建了mysql文件夹) wget -i -c http://dev.mysql.com/get/mysql57-community-releas ...
- 2017 Pycharm激活码
BIG3CLIK6F-eyJsaWNlbnNlSWQiOiJCSUczQ0xJSzZGIiwibGljZW5zZWVOYW1lIjoibGFuIHl1IiwiYXNzaWduZWVOYW1lIjoiI ...
- php 页面展示
php 页面展示 复杂逻辑. 段落注释