这篇博客是从另一位园友那里存的,但是当时忘了写原文的地址,如果有找到原文地址的请评论联系!

Lucas定理解决的问题是组合数取模。数学上来说,就是求 \(\binom n m\mod p\)。(p为素数)

这里\(n,m\)可能很大,比如达到\(10^{15}\),而\(p\)在\(10^9\)以内。显然运用常规的阶乘方法无法直接求解,所以引入Lucas定理。

Lucas定理

把\(n\)和\(m\)写成\(p\)进制数的样子(如果长度不一样把短的补成长的那个的长度):
\(n=(a0a1…ak)p\)
\(m=(b0b1…bk)p\)

那么:
\(\binom n m \equiv \prod _{i=0}^k \binom {a_i} {b_i} \mod p\)

证明
如果把Lucas定理从递归的角度理解,它其实是这样的:
设\(n=ap+b,m=cp+d,(b,d<p,a=\lfloor\frac{n}{p}\rfloor,c=\lfloor \frac{m}{p}\rfloor) \\ \binom n m \equiv \binom a c * \binom b d\)

这个定理的一个很巧妙的证法是通过二项式定理来说明上面的式子是成立的。

首先,对于任意质数\(p\),有:
\((1+x)^p\equiv 1+x^p\mod p\)

其证明可以由费马小定理\((x^p \equiv x \mod p) |p为素数)\)直接得出:
\((1+x)^p\equiv 1+x\)
\(x^p\equiv x\)
所以\((1+x)^p\equiv 1+x \equiv 1+x^p\)

(当然同样也有\((a+b)^p\equiv a^p+b^p \mod p\),具体为什么你可以拆开前面的式子,将其除 \(a^p\) 和 \(b^p\) 项外的所有项的系数好好研究一下(其实就是杨辉三角的第p层),可以发现把对称项系数分别合并后都能整除\(p\))

利用这个性质,我们证明Lucas定理:
\(\begin{aligned} (1+x)^n&=(1+x)^{\lfloor \frac{n}{p}\rfloor *p}(1+x)^b \\ &=(1+x^p)^{\lfloor \frac{n}{p}\rfloor}(1+x)^b \\ &=\sum _{i=0}^k\binom {\lfloor \frac{n}{p}\rfloor} ix^{pi}\sum _{j=0}^k\binom b jx^j \end{aligned}\)

考察等式左右两边xmxm的系数,可以发现:
\(\begin{aligned} 左边&=\binom n m \\ 右边&=\binom {\lfloor \frac{n}{p}\rfloor} i\binom b j,(pi+j=m,j<p) \\ &=\binom {\lfloor \frac{n}{p}\rfloor} {\lfloor \frac{m}{p}\rfloor} \binom b d \end{aligned}\)

所以上面的式子成立,证明完毕。

如果不算预处理什么的,算法时间复杂度为\(O(log_pn)\)。如果能够支持预处理,那么就加一个\(O(p)\),要不就用快速幂,乘上\(O(logp)\)。

Lucas定理详解的更多相关文章

  1. pick定理详解

    一.概念 假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1. 二.说明 Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的 ...

  2. 几何:pick定理详解

    一.概念 假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1. 二.说明 Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的 ...

  3. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  4. (转载)--SG函数和SG定理【详解】

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  5. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  6. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

  7. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  8. Lucas定理及其应用

    Lucas定理这里有详细的证明. 其实就是针对n, m很大时,要求组合数C(n, m) % p, 一般来说如果p <= 10^5,那么就能很方便的将n,m转化为10^5以下这样就可以按照乘法逆元 ...

  9. Heapsort 堆排序算法详解(Java实现)

    Heapsort (堆排序)是最经典的排序算法之一,在google或者百度中搜一下可以搜到很多非常详细的解析.同样好的排序算法还有quicksort(快速排序)和merge sort(归并排序),选择 ...

随机推荐

  1. Spring IOC的Bean对象

    ---恢复内容开始--- 在Spring IOC模块中Bean是非常重要的.在这里我想给大家讲讲关于Bean对象实例化的三种注入方式: 首先,我先讲一下关于Bean对象属性值的两种注入方式:set注入 ...

  2. 自学Spring Boot

    简介: Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配 ...

  3. Servlet The Filter

    The Filter Filter不会产生Request或者是Response, 但是会在两者访问资源时, 对其作出改变.其可以作用于静态资源和动态资源. LifeCycle Filter会和Serv ...

  4. WPF中窗体在同一个位置实现不同页面切换

    要想在WPF窗体中实现不同页面切换,我们就需要用到ContentControl这个控件,这个控件的位置和大小就是你要显示页面的位置和大小. 下面举例说明: Xaml: <Grid> < ...

  5. Java常见对象Object类中的个别方法

    Java常见对象Object类 public int hashCode() : 返回该对象的哈希码值. 注意:哈希值是根据哈希算法计算出来的一个值,这个值和地址值有关,但是不是实际地址值.你可以理解成 ...

  6. linux 常用命令(持续更新)

    查看IP地址 ifconfig 查看TCP端口 netstat -ntlp vi 文本编辑 (1)进入vi编辑模式 在vi的默认模式中,直接在界面中输入: i 在光标所在位置开始编辑: a 在光标所在 ...

  7. minGw64编译Qt时遇到too many sections问题

    minGw64编译Qt时遇到too many sections问题: 修改\Src\qtbase\mkspecs\win32-g++\qmake.conf中 QMAKE_CFLAGS         ...

  8. 转载:jquery.ajax之beforeSend方法使用介绍

    常见的一种效果,在用ajax请求时,没有返回前会出现前出现一个转动的loading小图标或者“内容加载中..”,用来告知用户正在请求数据.这个就可以用beforeSend方法来实现. 下载demo:a ...

  9. memory bist lib

    model NVIC_REG6T_1024x32(resetb,margin,clk,en,we,addr,d,q) ( bist_definition( clock clk high; chip_e ...

  10. linux终端颜色控制

    引言: 由于在c代码中看到过打印彩色字, 又对PS1 想进一步了解,才有了这篇博文.----------------------------------------Linux 终端控制台字体颜色  - ...