[Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)
1297: [SCOI2009]迷路
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 1385 Solved: 993
[Submit][Status][Discuss]
Description
windy在有向图中迷路了。 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1。 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。
Input
第一行包含两个整数,N T。 接下来有 N 行,每行一个长度为 N 的字符串。 第i行第j列为'0'表示从节点i到节点j没有边。 为'1'到'9'表示从节点i到节点j需要耗费的时间。
Output
包含一个整数,可能的路径数,这个数可能很大,只需输出这个数除以2009的余数。
Sample Input
【输入样例二】
Sample Output
【样例解释一】
->->
【输出样例二】
HINT
30%的数据,满足 2 <= N <= 5 ; 1 <= T <= 30 。 100%的数据,满足 2 <= N <= 10 ; 1 <= T <= 1000000000 。
分析:
先用dp的思想分析可以分析出转移方程dp[i][t] = ∑dp[j][t - time(i,j)];但是t太大,并且时间也不允许;
正解:
可以把一个点拆出9个虚拟结点出来,node[i][j] 向 node[i][j + ]点向虚拟结点连边为1,然后所有到达这个点的都连边向node[i][],所有以这个点出发能到距离为j的点q从node[i][j - ]连边1向node[q][]; 于是原图换成了一个10 * 10的矩阵,矩乘 + 快速幂求出即行。 复杂度还是很低的。
矩阵乘法:
其实关于dp的东西如果发现是固定转移并且是刷表什么的,都可以联想到转换成矩乘来做。
AC代码:
# include <iostream>
# include <cstdio>
# include <cstring>
using namespace std;
const int mod = ;
int n;
long long t;
struct fi{
int data[][];
fi(){memset(data,,sizeof(data));
}
}A,T;
inline fi operator * (fi & a,fi & b){
fi t;
for(int i = ;i < n * ;i++){
for(int j = ;j < n * ;j++){
t.data[i][j] = ;
for(int k = ;k < n * ;k++){
t.data[i][j] += a.data[i][k] * b.data[k][j];
}
if(t.data[i][j] >= mod)t.data[i][j] %= mod;
}
}
return t;
}
inline fi operator +(fi & a,fi & b){
fi t;
for(int i = ;i < n * ;i++){
for(int j = ;j < n * ;j++){
t.data[i][j] = a.data[i][j] + b.data[i][j];
if(t.data[i][j] >= mod)t.data[i][j] %= mod;
}
}
return t;
}
inline void cmd(fi & A,fi & T,long long k){
while(k){
if(k & 1LL)A = A * T;
T = T * T;
k >>= 1LL;
}
return;
}
char str[];
void build(){
scanf("%d %lld",&n,&t);
int x;
for(int i = ;i < n;i++){
scanf("%s",str);
for(int j = ;j < n;j++){
x = str[j] - '';
if(!x)continue;
x -= ;
T.data[i * + x][j * ] = ;
}
for(int j = ;j < ;j++){
T.data[i * + j][i * + j + ] = ;
}
}
A.data[][] = ;
cmd(A,T,t);
printf("%d\n",A.data[][(n - ) * ]);
}
int main(){
build();
}
[Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)的更多相关文章
- bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)
题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...
- BZOJ1297 [SCOI2009]迷路 矩阵乘法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...
- 【bzoj1297】[SCOI2009]迷路 矩阵乘法
题目描述 给出一个 $n$ 个点的有向图,每条边的权值都在 $[1,9]$ 之间.给出 $t$ ,求从 $1$ 到 $n$ ,经过路径边权和恰好为 $t$ 的方案数模2009. 输入 第一行包含两个整 ...
- [luogu4159 SCOI2009] 迷路(矩阵乘法)
传送门 Solution 矩阵乘法新姿势qwq 我们知道当边权为1是我们可以利用矩阵快速幂来方便的求出路径数 那么对于边权很小的时候,我们可以将每个点都拆成若干个点 然后就将边权不为1转化为边权为1了 ...
- LUOGU P4159 [SCOI2009]迷路(矩阵乘法)
传送门 解题思路 以前bpw讲过的一道题,顺便复习一下矩阵乘法.做法就是拆点,把每个点拆成\(9\)个点,然后挨个连边.之后若\(i\)与\(j\)之间的边长度为\(x\),就让\(i\)的第\(x\ ...
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- 【矩阵快速幂】bzoj1297 [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status ...
- [SCOI2009]迷路(矩阵快速幂) 题解
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- bzoj1297 [SCOI2009]迷路——拆点+矩阵快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297 一看感觉是矩阵快速幂之类的,但边权不好处理啊: 普通的矩阵快速幂只能处理边权为1的,所 ...
随机推荐
- 登录脚本重构Element
登录脚本重构Element package com.gubai.selenium; import org.openqa.selenium.By; import org.openqa.selenium. ...
- SPOJ COT2 Count on a tree II (树上莫队,倍增算法求LCA)
题意:给一个树图,每个点的点权(比如颜色编号),m个询问,每个询问是一个区间[a,b],图中两点之间唯一路径上有多少个不同点权(即多少种颜色).n<40000,m<100000. 思路:无 ...
- MongoDB最简单的入门教程之一 环境搭建
MongoDB是近年来非常流行的一个介于关系数据库和非关系数据库之间的解决方案,特别广泛地应用于国内很多互联网公司,是非关系数据库当中功能最丰富,最像关系数据库的. MongoDB支持的数据结构非常松 ...
- python调用脚本或shell的方式
python调用脚本或shell有下面三种方式: os.system()特点:(1)可以调用脚本.(2)可以判断是否正确执行.(3)满足不了标准输出 && 错误 commands模块特 ...
- 简洁的KVO -- 使用Block响应事件
涉及内容: KVO,Runtime,Category,Block 首先创建NSObject的Category 举个例子是这样的: 随后定义你需要响应的Block结构 我简单一点就这样咯 typedef ...
- Python基础4 迭代器,生成器,装饰器,Json和pickle 数据序列化
本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 孩子,我现在有个需 ...
- 深度学总结:skip-gram pytorch实现
文章目录 skip-gram pytorch 朴素实现网络结构训练过程:使用nn.NLLLoss()batch的准备,为unsupervised,准备数据获取(center,contex)的pair: ...
- SQL语句操作SQL SERVER数据库登录名、用户及权限
要想成功访问 SQL Server 数据库中的数据, 我们需要两个方面的授权: 获得准许连接 SQL Server 服务器的权利: 获得访问特定数据库中数据的权利(select, update, de ...
- python3.x Day6 IO多路复用
IO多路复用import asyncio 这个是异步IO模块 这个还不知道怎么用 select poll epoll 都是IO多路复用 windows 仅支持select linux2.6以后 支持e ...
- oracle自增序列创建
表atable(id,a) id需要自增 首先建立一个序列:create sequence seq_atable minvalue 1 maxvalue 999999999999999999 star ...