题目分析:

比较有意思,但是套路的数学题。

题目要求$ \prod_{i=1}^{n} \prod_{j=1}^{m}Fib(gcd(i,j)) $.

注意到$ gcd(i,j) $有大量重复,采用莫比乌斯反演。可以写成:

$ \prod_{i=1}^{min(n,m)}Fib(i)^{\sum_{i|d}\mu(\frac{d}{i})\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor} $.

更进一步的,我们可以发现幂是一个求和,那么把求和依次提出,再重新组合在一起,就变成了:

$ \prod_{i=1}^{min(n,m)}(\prod_{i|d}Fib(i)^{\mu(\frac{d}{i})})^{\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor} $.

可以发现最外层的积的下标是$ i $或$ d $对答案没有影响,原因我们可以考虑当下标是$ i $的时候,它会对它的每个倍数产生影响,而倍数的影响是不论$ i $的。所以对于每个倍数我们同样可以枚举因数,式子可以写成:

$ \prod_{d=1}^{min(n,m)}(\prod_{i|d}Fib(i)^{\mu(\frac{d}{i})})^{\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor} $.

注意这个式子,它的里层是一个只与当前的$ d $有关的式子,而外层是一个典型的分块。那么我们预处理出里面的情况并做前缀积,外面再采用分块,这道题就可以顺利解决。

对于里面的式子,我们需要$ O(nlog{n}) $进行预处理,而每个询问我们可以分块解决,单次询问的时间复杂度是$ O(\sqrt{n}log{n}) $所以时间复杂度是$O(nlog{n}+T\sqrt{n}log{n})$.

注意到这题没有用到斐波那契数列的任何性质,所以函数$ Fib(x) $可以改成任意其它函数。

代码:

 #include<bits/stdc++.h>
using namespace std; const int mod = ;
const int maxn = ; const int N = ; int n,m;
int Fib[maxn],Inv[maxn];
int MFib[maxn],MInv[maxn]; int flag[maxn],prime[maxn>>],mu[maxn],num; int fast_pow(int now,long long pw){
int z = now,ans = ;long long im = ;
while(im <= pw){
if(im & pw) ans = (1ll*ans*z)%mod;
z = (1ll*z*z)%mod; im <<= ;
}
return ans;
} void GetMiu(){
flag[] = ;mu[] = ;
for(int i=;i<=N;i++){
if(!flag[i]) prime[++num] = i,mu[i] = -;
for(int j=;j<=num&&i*prime[j]<=N;j++){
flag[i*prime[j]] = ;
if(i % prime[j] == ) {mu[i*prime[j]] = ;break;}
else mu[i*prime[j]] = -mu[i];
}
}
} void init(){
GetMiu();
Fib[] = ; Fib[] = ;
for(int i=;i<=N;i++) Fib[i] = (Fib[i-]+Fib[i-])%mod;
for(int i=;i<=N;i++) Inv[i] = fast_pow(Fib[i],mod-);
for(int i=;i<=N;i++) MFib[i] = ;
for(int i=;i<=N;i++){
for(int j=;i*j<=N;j++){
if(mu[j] == ) continue;
if(mu[j] == ) MFib[i*j] = (1ll*MFib[i*j]*Fib[i])%mod;
else MFib[i*j] = (1ll*MFib[i*j]*Inv[i])%mod;
}
}
for(int i=;i<=N;i++) MFib[i] = (1ll*MFib[i]*MFib[i-])%mod;
for(int i=;i<=N;i++) MInv[i] = fast_pow(MFib[i],mod-);
} void work(){
int res = ;
for(int i=;i<=min(n,m);){
int nxt = min(n/(n/i),m/(m/i));
long long z1 = 1ll*(n/i)*(m/i);
res = (1ll*res*fast_pow((1ll*MFib[nxt]*MInv[i-])%mod,z1))%mod;
i = nxt+;
}
printf("%d\n",res);
} int main(){
init();
int T; scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
work();
}
return ;
}

洛谷3704 [SDOI2017] 数字表格 【莫比乌斯反演】的更多相关文章

  1. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  2. 【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演

    题目描述 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生 ...

  3. BZOJ4816 SDOI2017 数字表格 莫比乌斯反演

    传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i= ...

  4. bzoj 4816: 洛谷 P3704: [SDOI2017]数字表格

    洛谷很早以前就写过了,今天交到bzoj发现TLE了. 检查了一下发现自己复杂度是错的. 题目传送门:洛谷P3704. 题意简述: 求 \(\prod_{i=1}^{N}\prod_{j=1}^{M}F ...

  5. 洛谷P3704 [SDOI2017]数字表格(莫比乌斯反演)

    传送门 yyb大佬太强啦…… 感觉还是有一点地方没有搞懂orz //minamoto #include<cstdio> #include<iostream> #include& ...

  6. 洛谷 P3704 [SDOI2017]数字表格(莫比乌斯函数)

    题面传送门 题意: 求 \[\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)} \] \(T\) 组测试数据,\(1 \leq T \leq ...

  7. 洛谷P3704 [SDOI2017]数字表格

    题目描述 Doris刚刚学习了fibonacci数列.用f[i]f[i] 表示数列的第ii 项,那么 f[0]=0f[0]=0 ,f[1]=1f[1]=1 , f[n]=f[n-1]+f[n-2],n ...

  8. BZOJ.4816.[SDOI2017]数字表格(莫比乌斯反演)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Descriptio ...

  9. BZOJ 4816 [Sdoi2017]数字表格 ——莫比乌斯反演

    大力反演出奇迹. 然后xjb维护. 毕竟T1 #include <map> #include <ctime> #include <cmath> #include & ...

随机推荐

  1. ASP.NET MVC5+EF6+EasyUI 后台管理系统-WebApi的用法与调试

    1:ASP.NET MVC5+EF6+EasyUI 后台管理系统(1)-WebApi与Unity注入 使用Unity是为了使用我们后台的BLL和DAL层 2:ASP.NET MVC5+EF6+Easy ...

  2. position fixed 相对于父级定位

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. 如何在C#中使用Dapper(译)

    前言: 对象关系映射(ORM)已经被使用了很长时间,以解决在编程过程中对象模型与数据模型在关系数据库中不匹配的问题. Dapper是由Stack OverFlow团队开发的开源的,轻量级的ORM.相比 ...

  4. beego 各种形式的路由实例

    基本路由 基本路由就是和http.Handle和http.HandleFunc一样都是绑定固定的路径,比如绑定了4个路由映射: 定义的4个控制器中,匹配哪一个路由,就输出对应的控制名. beego.R ...

  5. JavaScript对象访问器属性

    对象访问器就是setter和getter,他们的作用就是 提供另外一种方法来获取或者设置对象的属性值, 并且在获取和设置的时候,可以用一定的其他操作. 看下面代码: <script> va ...

  6. JQuery动态修改样式

    JQuery动态修改样式 SetStyle(); function SetStyle() { $(".toolbar").remove(); $(".placeholde ...

  7. Linux df 与du用法

    df 查看一级目录的大小,但是不能查看文件的大小.du 可以查看目录或者文件大小. 1 df的基本用法 df命令可以显示目前所有文件系统的总空间及当前可用空间,用法如下: -a 全部文件系统列表-h ...

  8. SQLServer2016 之后增加了索引列数的限制 从 16个列 增加到了 32个列

    创建带有包含列的索引 https://docs.microsoft.com/zh-cn/sql/relational-databases/indexes/create-indexes-with-inc ...

  9. for循环游标

  10. C# Note21: 扩展方法(Extension Method)及其应用

    前言 今天在开会时提到的一个概念,入职3个多月多注重在项目中使用C#的编程知识,一直没有很认真地过一遍C#的全部语法,当我们新人被问及是否了解Extension Method时,一时之间竟不能很通俗准 ...