题目描述

小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。

游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M (M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。

小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?

输入输出格式

输入格式:

输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。 接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。

输出格式:

输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。

输入输出样例

输入样例#1: 复制

4 3
1 1
1 2
1 3
1 5
输出样例#1: 复制

0 0 1 1

说明

对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。

以上所有数均为正整数。

黑题不好惹。。

暴力比较好写,直接枚举$m$

分堆时肯定是先$\frac{n}{i}$堆,此时会剩下$n \mod i$个石子,将这些石子平均分回去

这样就会有$n \mod i$个堆大小为$\frac{n}{i}+1$

有$i-n \mod i$个堆大小为$\frac{n}{i}$

但是$O(n*m)$是过不了的。

不难发现$\frac{n}{i}$只有$\sqrt{n}$种取值,观察发现(神TM能观察出来),每种取值对答案的贡献只有$i$和$i+1$两种

然后暴力的算一算就好啦

// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<algorithm>
const int MAXN=;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,S[MAXN],SG[MAXN];//游戏可以看做是每个位置独立进行的
int a[MAXN],F;
int GetSG(const int now)
{
if(~SG[now]) return SG[now];
if(now<F) return SG[now]=;
SG[now]=;
for(int i=;i<=now;i=now/(now/i)+ )//枚举每个取值
{
for(int j=i;j<=std::min(i+,now);j++)//观察发现只有两种不同的贡献
{
int ans=;
if((now%j)&) ans=ans^GetSG(now/j+);
if((j-now%j)&) ans=ans^GetSG(now/j);
S[ans]=now;
}
}
while(S[SG[now]]==now) SG[now]++;//这里有个小优化
return SG[now];
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
int QWQ=read();
F=read();
memset(SG,-,sizeof(SG));
while(QWQ--)
{
int N=read();
for(int i=;i<=N;i++) a[i]=read();
int ans=;
for(int i=;i<=N;i++)
ans=ans^GetSG(a[i]);
if(ans==) printf("0 ");
else printf("1 ");
}
return ;
}

洛谷P3235 [HNOI2014]江南乐(Multi-SG)的更多相关文章

  1. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  2. luogu P3235 [HNOI2014]江南乐

    传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...

  3. 【bzoj3576】[Hnoi2014]江南乐 博弈论+SG定理+数学

    题目描述 两人进行 $T$ 轮游戏,给定参数 $F$ ,每轮给出 $N$ 堆石子,先手和后手轮流选择石子数大于等于 $F$ 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过 ...

  4. P3235 [HNOI2014]江南乐

    $ \color{#0066ff}{ 题目描述 }$ 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的 ...

  5. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

  6. luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

    感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...

  7. BZOJ 3576: [Hnoi2014]江南乐 (SG函数)

    题意 有nnn堆石子,给定FFF,每次操作可以把一堆石子数不小于FFF的石子平均分配成若干堆(堆数>1>1>1). 平均分配即指分出来的石子数中最大值减最小值不超过111.不能进行操 ...

  8. bzoj3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  9. [HNOI2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

随机推荐

  1. Linux主机操作系统加固规范

      对于企业来说,安全加固是一门必做的安全措施.主要分为:账号安全.认证授权.协议安全.审计安全.总的来说,就是4A(统一安全管理平台解决方案),账号管理.认证管理.授权管理.审计管理.用漏洞扫描工具 ...

  2. Vue SSR不可不知的问题

    Vue SSR不可不知的问题 本文主要介绍Vue SSR(vue服务端渲染)的应用场景,开发中容易遇到的一些问题,提升ssr性能的方法,以及ssr的安全性问题. ssr的应用场景 1.SEO需求 SE ...

  3. (webpack系列二)webpack打包优化探索

    虽然webpack的已经升级到了webpack4,而我们目前还在使用webpack3,但其中的优化点都大同小异,升级后同样适用. 性能优化初步原则 减小代码量 减小请求数 最大化利用浏览器缓存 这三条 ...

  4. 【spring】task 任务调度(定时任务)

    1.定时任务的几种实现可以看这里:http://gong1208.iteye.com/blog/1773177 2.需要导入spring的jar包,可以参看之前的[spring]相关文章 3.这里使用 ...

  5. sql中base64解码、译码

    1.5.6版本及之后的版本的base64 主要就是两个MySQL内部函数to_base64和from_base64,使用也很简单,如下: 1)先查看MySQL的版本:mysql> select ...

  6. .NetCore外国一些高质量博客分享

    前言 我之前看.netcore一些问题时候,用bing搜索工具搜到了一些外国人的博客.翻看以下,有学习的价值,就分享在这里了. 个人博客 andrewlock.net 最新几篇如下,一看标题就知道很有 ...

  7. 项目ITP(七) javaWeb 整合 Quartz 实现动态调度 并且 持久化

    原创地址:http://www.cnblogs.com/Alandre/(泥沙砖瓦浆木匠),需要转载的,保留下! 弟子规 圣人训 首孝弟 次谨信 泛爱众 而亲仁 有余力 则学文 Written In ...

  8. leetcode — next-permutation

    import java.util.Arrays; /** * Source : https://oj.leetcode.com/problems/next-permutation/ * * Creat ...

  9. Java BIO、NIO、AIO

    同步与异步 同步与异步的概念, 关注的是 消息通信机制 同步是指发出一个请求, 在没有得到结果之前该请求就不返回结果, 请求返回时, 也就得到结果了. 比如洗衣服, 把衣服放在洗衣机里, 没有洗好之前 ...

  10. centos7安装kafka_2.11

    1.下载 官网地址:http://kafka.apache.org/downloads.html 下载:wget https://www.apache.org/dyn/closer.cgi?path= ...