A

B

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-10;
const double EPS = 1.0e-4;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll Mod = ;
set<int> need;
map<int, bool> mp[];
vector<int> ans;
int main()
{
ll n, k;
cin >> n >> k;
ll cnt = ;
for (ll i = ; i >= ; i--)
{
if ((1LL << i)&n)
{
cnt = i;
break;
}
}
if (k == )
{
cout << n << endl;
}
else
{
cout << (1LL << (cnt + )) - << endl;
}
return ;
}

D

每个点(i,j)在min(i,min(r,n-r+1))*min(j,min(r,m-r+1))个正方形内

这个点的贡献为number*在多少个正方形内/(n-r+1)/(m-r+1)

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-10;
const double EPS = 1.0e-4;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll Mod = ;
ll area;
ll chang, kuang;
ll n, m, r, k;
double anser = ;
map<ll, bool> mp[];
struct node
{
ll x, y, sum;
friend operator<(node a, node b)
{
return a.sum < b.sum;
}
};
priority_queue<node> que;
ll judge(int x, int y)
{
if (x == (n + ) / && (n & ) && y == (m + ) / && (m & ))
{
return ;
}
if ((x == (n + ) / && (n & )) || (y == (m + ) / && (m & )))
{
return ;
}
return ;
}
int main()
{
cin >> n >> m >> r >> k;
chang = min(r, n - r + ), kuang = min(r, m - r + );
area = (n - r + ) * (m - r + );
node cnt;
cnt.x = (n + ) / , cnt.y = (m + ) / , cnt.sum = min(cnt.x, chang) * min(cnt.y, kuang);
que.push(cnt);
while (!que.empty() && k)
{
node cur = que.top();
que.pop();
ll number = judge(cur.x, cur.y);
number = min(number, k);
k -= number;
anser += 1.0 * number * cur.sum / area;
node todo;
todo.x = cur.x - , todo.y = cur.y, todo.sum = min(todo.x, chang) * min(todo.y, kuang);
if (todo.x >= && todo.y >= && mp[todo.x][todo.y] == )
{
que.push(todo);
mp[todo.x][todo.y]++;
}
todo.x = cur.x, todo.y = cur.y - , todo.sum = min(todo.x, chang) * min(todo.y, kuang);
if (todo.x >= && todo.y >= && mp[todo.x][todo.y] == )
{
que.push(todo);
mp[todo.x][todo.y]++;
}
}
printf("%.10f\n", anser);
}

E

给你一个大小为N(N<=16)的集合

然后再给你个N个质数 要求你求第K小的一个满足要求的数 一个数满足要求当且仅当其质因数都在集合内

二分搜索 分成两个集合各自乘积 然后从一个集合的number[0].size()开始 递减 从另外一个 number[1].size()开始递增 用一个cur来维护每个number[0][i]的贡献

因为当最坏的情况时后面的数比前面的大  所以折半的时候前面的集合要适当小一点不然会T

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-10;
const double EPS = 1.0e-4;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll Mod = ;
ll k;
ll limit = 1e18;
ll num[];
double anser = ;
vector<ll> number[];
void dfs(int l, int r, ll x, int pos)
{
number[pos].push_back(x);
for (int i = l; i <= r; i++)
{
if (limit / num[i] >= x)
{
dfs(i, r, x * num[i], pos);
}
}
}
ll check(ll x)
{
ll sum = ;
ll cur = ;
for (int i = number[].size() - ; i >= ; i--)
{
while (cur < number[].size() && number[][cur] <= x / number[][i])
{
++cur;
}
sum += cur;
}
return sum;
}
int main()
{
int n;
cin >> n;
for (int i = ; i <= n; i++)
{
cin >> num[i];
}
sort(num + , num + + n);
cin >> k;
//TS;
dfs(, min(, n), , );
dfs(min(, n) + , n, , );
cout << number[].size() << " " << number[].size() << endl;
//TS;
sort(number[].begin(), number[].end());
sort(number[].begin(), number[].end());
ll l = ;
ll r = 1e18;
while (l < r - )
{
ll mid = (l + r) >> ;
if (check(mid) >= k)
{
r = mid;
}
else
{
l = mid;
}
}
cout << r << endl;
}

Codeforces 912 质因数折半 方格数学期望的更多相关文章

  1. Codeforces 839C Journey - 树形动态规划 - 数学期望

    There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can r ...

  2. Codeforces Round #259(div2)C(数学期望)

    数学题. 关键是求最大值为k时有多少种情况,结果是kn-(k-1)n-1.可以这么想:每一次都从1至k里选,共kn种,这里需要再减去每一次都从1至k-1里面选的情况.当然也可以分类计数法:按出现几次k ...

  3. CodeForces Div1: 995 D. Game(数学期望)

    Allen and Bessie are playing a simple number game. They both know a function f:{0,1}n→Rf:{0,1}n→R, i ...

  4. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  5. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  6. 2019暑期集训第二讲 - 组合数学&概率&数学期望

    A - 容斥原理(CodeForces - 451E) 二进制状态压缩暴力枚举哪几个花选的个数超过了总个数,卢卡斯定理求组合数,容斥原理求答案 可以先把每个花的数量当成无限个,这样就是一个多重集的组合 ...

  7. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  8. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  9. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

随机推荐

  1. java中的null类型---有关null的9件事

    摘自 https://blog.csdn.net/qq_25077777/article/details/80174763 今天听到一个问题,java中的null类型,null竟然是一种类型 java ...

  2. Electron-Vue工程初始化,以及需要掌握的相关知识

    1.安装nodejs 下载地址:http://nodejs.cn/ 需要重启系统 2.安装electron npm install electron -g 3.安装vue npm install vu ...

  3. Mac ssh key生成

    转载https://blog.csdn.net/wangjunling888/article/details/51115659 1. 查看秘钥是否存在 打开终端查看是否已经存在SSH密钥:cd ~/. ...

  4. architecture 20190628

    https://abp.io/  --ABP v2 官网 https://grpc.io/ --gRPC官网 https://devblogs.microsoft.com/dotnet/introdu ...

  5. Eigen中的矩阵及向量运算

    Eigen中的矩阵及向量运算 ,[+,+=,-,-=] ,[\*,\*=] ,[.transpose()] ,[.dot(),.cross(),.adjoint()] ,针对矩阵元素进行的操作[.su ...

  6. ros the public key is not available

    W: An error occurred during the signature verification. The repository is not updated and the previo ...

  7. Git - 对一组仓库进行配置

    对一组仓库使用一套配置,另一组仓库使用另一套配置的需求也是有的,比如公司仓库的配置和我个人项目的仓库配置并不完全相同,每次都修改单个仓库的配置太麻烦并且可能会粗心忘改了以错误的配置进行提交,如何对一个 ...

  8. Python基本语法_基本数据类型_数值型详解

    目录 目录 软件环境 Python变量调用的过程 数值型 删除一个数值类型对象 布尔型 Bool 标准整型 Int 长整型 双精度浮点型 Float 复数 数值类型对象的内建功能函数 absNumbe ...

  9. 阶段3 1.Mybatis_03.自定义Mybatis框架_3.自定义mybatis的编码-根据测试类中缺少的创建接口和类

    先认识一下这几个类.Resources是一个class SqlSessionFactoryBuilder 创建新项目 复制相关的依赖 复制之前的代码 复制到当前项目的src下 把Mybits的依赖删除 ...

  10. 用JS实现移动的窗口

    https://blog.csdn.net/iteye_21064/article/details/81496640 用JS实现移动的窗口 2007年09月06日 23:23:00 阅读数:3 很简单 ...