HDU 6656 Kejin Player
- Time limit 5000 ms
- Memory limit 524288 kB
- OS Windows
解题思路
因为升级只能一级一级地升,所以所求期望满足了区间加的性质,可以一级一级地算,然后求前缀和、输出(状态不好,临博客涕零,不知所言)
接着扔链接(留坑)
- 这篇博客推公式的时候好像有些地方下标有点错,而且推公式的过程省了不少(雾)https://blog.csdn.net/toohandsomeIeaseId/article/details/99357608
- 这篇推公式的方向对我来说好新颖,进行非整数次的氪金,这样就不用死磕无穷级数了……(我的猴子排序那篇也可以计算快点了)https://blog.csdn.net/qq_41785863/article/details/99347386
源代码
参考别人博客写的,感觉像抄的一样
#include<stdio.h>
const int mod=1e9+7;
const int MAXN=5e5+5;
int T;
int n,m;
long long inv(long long x)//快速幂求逆元 inv[a]=a^(p-2)
{
long long res=1LL;
long long b=mod-2;
while(b){
if(b&1) res=res*x%mod;
x*=x;
x%=mod;
b>>=1;
}
return res%mod;
}
long long sum[MAXN];
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
sum[0] = 0;
for(int i = 1; i <= n; ++i)
{
long long r, s, x, a;
scanf("%lld%lld%lld%lld", &r, &s, &x, &a);
long long p = r * inv(s) % mod;
sum[i] = (sum[i - 1] + (a + (1 - p + mod) % mod * (a + sum[i - 1] - sum[x - 1] + mod) % mod * inv(p) % mod) % mod + mod) % mod;//关键就是这个了
}
while(m--)
{
int l, r;
scanf("%d%d", &l, &r);
long long ans = (sum[r - 1] - sum[l - 1] + mod) % mod;//这里为啥来着……
printf("%lld\n", ans);
}
}
return 0;
}
HDU 6656 Kejin Player的更多相关文章
- HDU 6656 Kejin Player (期望DP 逆元)
2019 杭电多校 7 1011 题目链接:HDU 6656 比赛链接:2019 Multi-University Training Contest 7 Problem Description Cub ...
- 2019杭电多校第七场 HDU - 6656 Kejin Player——概率&&期望
题意 总共有 $n$ 层楼,在第 $i$ 层花费 $a_i$ 的代价,有 $pi$ 的概率到 $i+1$ 层,否则到 $x_i$($x_i \leq 1$) 层.接下来有 $q$ 次询问,每次询问 $ ...
- 杭电多校HDU 6656 Kejin Player(概率DP)题解
题意: 最低等级\(level\ 1\),已知在\(level\ i\)操作一次需花费\(a_i\),有概率\(p_i\)升级到\(level\ i+1\),有\(1 - p_i\)掉级到\(x_i( ...
- 2019 Multi-University Training Contest 7 Kejin Player Final Exam
Kejin Player 期望DP 题意: 初始等级为1,每一级有四个参数 r , s , x , a . 每一级有一个概率p=r/s花费a的代价升级到下一级,失败可能会倒退到x级 设从 l 到 r ...
- 2019HDU多校第七场 HDU6656 Kejin Player H 【期望递归】
一.题目 Kejin Player H 二.分析 因为在当前等级$i$,如果升级失败可能会退回到原来的某一等级$x$,相当于就是失败的期望就是$E + (Sum[i-1] - Sum[x-1]) + ...
- 升级降级(期望DP)2019 Multi-University Training Contest 7 hdu杭电多校第7场(Kejin Player)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6656 题意: 有 1~n 个等级,你现在是1级,求升到n级的花费期望.会给你n个条件(i~i+1级升级 ...
- hdu多校第七场 1011 (hdu6656) Kejin Player 概率dp
题意: 一个游戏,有许多关,到下一关要花费金钱,做出尝试,有概率成功,若成功则到达下一关,若失败则停在此关或退回到前面某关,询问第l关到第r关的期望费用 题解: 显然,第r关到第l关的费用是dp[r] ...
- [2019杭电多校第七场][hdu6656]Kejin Player
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6656 题意为从i级花费a元有p的概率升到i+1级,有1-p的概率降到x级(x<i),查询从L级升 ...
- 【HDOJ6656】Kejin Player(期望DP)
题意:玩一个共有n级的游戏,i级出发每次可以花a[i]的代价,有p[i]的几率变成i+1级,有1-p[i]的几率变成x[i]级,x[i]<=i 多次询问,每次询问从l级升到r级的期望总代价 n, ...
随机推荐
- mysql——单表查询——其它整理示例00
), sname ), sage ), ssex ) ); ','zhaolei','1990-01-01','nan'); ','qiandian','1990-12-21','nan'); ',' ...
- xmake从入门到精通9:交叉编译详解
xmake是一个基于Lua的轻量级现代化c/c 的项目构建工具,主要特点是:语法简单易上手,提供更加可读的项目维护,实现跨平台行为一致的构建体验. 除了win, linux, macOS平台,以及an ...
- css样式,媒体查询,垂直居中,js对象
下面是一些截图,有关查询效率,css样式,媒体查询,垂直居中,js基本类型.
- [转帖]紫光与群联联盟,长江存储NAND+群联主控+紫光品牌SSD可期
紫光与群联联盟,长江存储NAND+群联主控+紫光品牌SSD可期 全国产的 SSD https://baijiahao.baidu.com/s?id=1620789429952097018&wf ...
- 【洛谷P1886】滑动窗口——单调队列
没想到啊没想到,时隔两个月,我单调队列又懵了…… 调了一个小时,最后错在快读,啊!!!!(不过洛谷讨论真好啊,感谢大佬!) 考前就不推新东西了,好好写写那些学过的东西 题目点这里(我就不粘了自己点一下 ...
- Git_初步了解
Git入门篇 一:Git是什么?Git是目前世界上最先进的分布式版本控制系统.工作原理 / 流程: Workspace:工作区Index / Stage:暂存区Repository:仓库区(或本地仓库 ...
- PostgreSQL-pg_ctl
命令简介 pg_ctl 启动.关闭.重启 postgres pg_ctl start [-w] [-s] [-D datadir] [-l filename] [-o options] [-p pat ...
- Gogs官方帮助文档
环境要求 数据库(选择以下一项): MySQL:版本 >= 5.7 PostgreSQL MSSQL TiDB(实验性支持,使用 MySQL 协议连接) 或者 什么都不安装 直接使用 SQLit ...
- 关于JAVA中的synchronized,一段不错的解释...
- 手把手带你了解sass
sass的使用 减少重复的工作 1.变量的声明: 是以$开头给变量命名; $height-color: #F30 2.变量的使用范围: 变量可以在多个地方存在,不一定限制在代码块中.但是如果定义在了代 ...