多线性方程(张量)组迭代算法的原理请看这里:若想看原理部分请留言,不方便公开分享

Gauss-Seidel迭代算法:多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现

import numpy as np
import time

1.1 Jacobi迭代算法

def Jacobi_tensor_V2(A,b,Delta,m,n,M):
start=time.perf_counter()#开始计时
find=0#用于标记是否在规定步数内收敛
X=np.ones(n)#迭代起始点
x=np.ones(n)#用于存储迭代的中间结果
d=np.ones(n)#用于存储Ax**(m-2)的对角线部分
m1=m-1
m2=2-m
for i in range(M):
print('X',X)
a=np.copy(A)
#得Ax**(m-2)
for j in range(m-2):
a=np.dot(a,X)
#得d 和 (2-m)Dx**(m-2)+(L'+U')x**(m-2)
for j in range(n):
d[j]=a[j,j]
a[j,j]=m2*a[j,j]
#迭代更新
for j in range(n):
x[j]=(b[j]-np.dot(a[j],X))/(m1*d[j])
#判断是否满足精度要求
if np.max(np.fabs(X-x))<Delta:
find=1
break
X=np.copy(x)
end=time.perf_counter()#结束计时
print('时间:',end-start)
print('迭代',i)
return X,find,i,end-start

1.2 张量A的生成函数和向量b的生成函数:

def Creat_A(m,n):#生成张量A
size=np.full(m, n)
X=np.ones(n)
while 1:
#随机生成给定形状的张量A
A=np.random.randint(-49,50,size=size)
#判断Dx**(m-2)是否非奇异,如果是,则满足要求,跳出循环
D=np.copy(A)
for i1 in range(n):
for i2 in range(n):
if i1!=i2:
D[i1,i2]=0
for i in range(m-2):
D=np.dot(D,X)
det=np.linalg.det(D)
if det!=0:
break
#将A的对角面张量扩大十倍,使对角面占优
for i1 in range(n):
for i2 in range(n):
if i1==i2:
A[i1,i2]=A[i1,i2]*10
print('A:')
print(A)
return A #由A和给定的X根据Ax**(m-1)=b生成向量b
def Creat_b(A,X,m):
a=np.copy(A)
for i in range(m-1):
a=np.dot(a,X)
print('b:')
print(a)
return a

1.3 对称张量S的生成函数:

def Creat_S(m,n):#生成对称张量B
size=np.full(m, n)
S=np.zeros(size)
print('S',S)
for i in range(4):
#生成n为向量a
a=np.random.random(n)*np.random.randint(-5,6)
b=np.copy(a)
#对a进行m-1次外积,得到秩1对称张量b
for j in range(m-1):
b=outer(b,a)
#将不同的b叠加得到低秩对称张量S
S=S+b
print('S:')
print(S)
return S
def outer(a,b):
c=[]
for i in b:
c.append(i*a)
return np.array(c)
return a

1.4 实验一

def test_1():
Delta=0.01#精度
m=3#A的阶数
n=3#A的维数
M=200#最大迭代步数
X_real=np.array( [2,3,4])
A=Creat_A(m,n)
b=Creat_b(A,X_real,m)
Jacobi_tensor_V2(A,b,Delta,m,n)

多线性方程组迭代算法——Jacobi迭代算法的Python实现的更多相关文章

  1. 线性方程组迭代算法——Jacobi迭代算法的python实现

    原理: 请看本人博客:线性方程组的迭代求解算法——原理 代码: import numpy as np max=100#迭代次数上限 Delta=0.01 m=2#阶数:矩阵为2阶 n=3#维数:3X3 ...

  2. 多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现

    多线性方程组(张量)迭代算法的原理请看这里:原理部分请留言,不方便公开分享 Jacobi迭代算法里有详细注释:多线性方程组迭代算法——Jacobi迭代算法的Python实现 import numpy ...

  3. ICP(迭代最近点)算法

    图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对 ...

  4. 算法 递归 迭代 动态规划 斐波那契数列 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  5. flink PageRank详解(批量迭代的页面排名算法的基本实现)

    1.PageRank算法原理   2.基本数据准备 /** * numPages缺省15个测试页面 * * EDGES表示从一个pageId指向相连的另外一个pageId */ public clas ...

  6. 迭代硬阈值类算法总结||IHT/NIHT/CGIHT/HTP

    迭代硬阈值类(IHT)算法总结 斜风细雨作小寒,淡烟疏柳媚晴滩.入淮清洛渐漫漫. 雪沫乳花浮午盏,蓼茸蒿笋试春盘.人间有味是清欢. ---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法 ...

  7. ICP算法(迭代最近点)

    参考博客:http://www.cnblogs.com/21207-iHome/p/6034462.html 最近在做点云匹配,需要用c++实现ICP算法,下面是简单理解,期待高手指正. ICP算法能 ...

  8. 吴裕雄 python 机器学习——半监督学习标准迭代式标记传播算法LabelPropagation模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...

  9. OpenACC 书上的范例代码(Jacobi 迭代),part 3

    ▶ 使用Jacobi 迭代求泊松方程的数值解 ● 使用 data 构件,强行要求 u0 仅拷入和拷出 GPU 各一次,u1 仅拷入GPU 一次 #include <stdio.h> #in ...

随机推荐

  1. MS DOS 常用命令整理

    最近在开发用到一些dos下的一些指令,还有bat文件,特别是bat的便捷性让我在生活和开发过程中好好使用. dos指令: java com.pdcss.util.JacobService > D ...

  2. 如何用CSS定义一个动画?

    <style type="text/css"> div{ width:100px;height: 100px; animation: carton 5s; backgr ...

  3. Python-编码这趟浑水

    最近听Alex讲到python编码,还特意用博客讲解,觉得问题严重了,于是翻看各种博客,先简单的对编码错误做一个总结,其他的后续慢慢补上,还得上班.还得学习.还得写博客?感觉有点吃不消了.各位大神不喜 ...

  4. ubuntu开发c/c++帮助文档

    1.C语言库函数基本的帮助文档 sudo apt-get install manpages sudo apt-get install manpages-de sudo apt-get install ...

  5. I2C走线技巧

  6. sd卡无法启动及zc706更改主频后可以进入uboot无法启动kernel的坑

    好长的标题 +_+ 1.sd卡无法启动 起因:kernel底下通过dd测试速度,擦写了sd卡,再启动时发现无法启动 于是重新格式化,再将BOOT.bin 相关dtb u-rootfs zImage和u ...

  7. 十分钟理解Redux核心思想,过目不忘。

    白话Redux工作原理.浅显易懂. 如有纰漏或疑问,欢迎交流. Redux 约法三章 唯一数据源(state) 虽然redux中的state与react没有联系,但可以简单理解为react组件中的th ...

  8. RESTful (俗称:api接口文档)

    整体规范建议采用RESTful 方式来实施. 协议 API与用户的通信协议,总是使用HTTPs协议,确保交互数据的传输安全. 域名 应该尽量将API部署在专用域名之下.https://api.exam ...

  9. Autoit脚本调用pscp上传小程序

    linux上传文件用pscp上传相对麻烦,如下写了个脚本方便上传 代码如下: $fileURL=@ScriptDir & "pscp.ini" If (FileExists ...

  10. php 系统函数

    realpath();//测试和文档解释不同,可以判断文件是否存在,存在返回路径否则返回false rtrim("Hello World",’d‘);//可以删除指定字符串