多线性方程组迭代算法——Jacobi迭代算法的Python实现
多线性方程(张量)组迭代算法的原理请看这里:若想看原理部分请留言,不方便公开分享
Gauss-Seidel迭代算法:多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现
import numpy as np
import time
1.1 Jacobi迭代算法
def Jacobi_tensor_V2(A,b,Delta,m,n,M):
start=time.perf_counter()#开始计时
find=0#用于标记是否在规定步数内收敛
X=np.ones(n)#迭代起始点
x=np.ones(n)#用于存储迭代的中间结果
d=np.ones(n)#用于存储Ax**(m-2)的对角线部分
m1=m-1
m2=2-m
for i in range(M):
print('X',X)
a=np.copy(A)
#得Ax**(m-2)
for j in range(m-2):
a=np.dot(a,X)
#得d 和 (2-m)Dx**(m-2)+(L'+U')x**(m-2)
for j in range(n):
d[j]=a[j,j]
a[j,j]=m2*a[j,j]
#迭代更新
for j in range(n):
x[j]=(b[j]-np.dot(a[j],X))/(m1*d[j])
#判断是否满足精度要求
if np.max(np.fabs(X-x))<Delta:
find=1
break
X=np.copy(x)
end=time.perf_counter()#结束计时
print('时间:',end-start)
print('迭代',i)
return X,find,i,end-start
1.2 张量A的生成函数和向量b的生成函数:
def Creat_A(m,n):#生成张量A
size=np.full(m, n)
X=np.ones(n)
while 1:
#随机生成给定形状的张量A
A=np.random.randint(-49,50,size=size)
#判断Dx**(m-2)是否非奇异,如果是,则满足要求,跳出循环
D=np.copy(A)
for i1 in range(n):
for i2 in range(n):
if i1!=i2:
D[i1,i2]=0
for i in range(m-2):
D=np.dot(D,X)
det=np.linalg.det(D)
if det!=0:
break
#将A的对角面张量扩大十倍,使对角面占优
for i1 in range(n):
for i2 in range(n):
if i1==i2:
A[i1,i2]=A[i1,i2]*10
print('A:')
print(A)
return A #由A和给定的X根据Ax**(m-1)=b生成向量b
def Creat_b(A,X,m):
a=np.copy(A)
for i in range(m-1):
a=np.dot(a,X)
print('b:')
print(a)
return a
1.3 对称张量S的生成函数:
def Creat_S(m,n):#生成对称张量B
size=np.full(m, n)
S=np.zeros(size)
print('S',S)
for i in range(4):
#生成n为向量a
a=np.random.random(n)*np.random.randint(-5,6)
b=np.copy(a)
#对a进行m-1次外积,得到秩1对称张量b
for j in range(m-1):
b=outer(b,a)
#将不同的b叠加得到低秩对称张量S
S=S+b
print('S:')
print(S)
return S
def outer(a,b):
c=[]
for i in b:
c.append(i*a)
return np.array(c)
return a
1.4 实验一
def test_1():
Delta=0.01#精度
m=3#A的阶数
n=3#A的维数
M=200#最大迭代步数
X_real=np.array( [2,3,4])
A=Creat_A(m,n)
b=Creat_b(A,X_real,m)
Jacobi_tensor_V2(A,b,Delta,m,n)
多线性方程组迭代算法——Jacobi迭代算法的Python实现的更多相关文章
- 线性方程组迭代算法——Jacobi迭代算法的python实现
原理: 请看本人博客:线性方程组的迭代求解算法——原理 代码: import numpy as np max=100#迭代次数上限 Delta=0.01 m=2#阶数:矩阵为2阶 n=3#维数:3X3 ...
- 多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现
多线性方程组(张量)迭代算法的原理请看这里:原理部分请留言,不方便公开分享 Jacobi迭代算法里有详细注释:多线性方程组迭代算法——Jacobi迭代算法的Python实现 import numpy ...
- ICP(迭代最近点)算法
图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对 ...
- 算法 递归 迭代 动态规划 斐波那契数列 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- flink PageRank详解(批量迭代的页面排名算法的基本实现)
1.PageRank算法原理 2.基本数据准备 /** * numPages缺省15个测试页面 * * EDGES表示从一个pageId指向相连的另外一个pageId */ public clas ...
- 迭代硬阈值类算法总结||IHT/NIHT/CGIHT/HTP
迭代硬阈值类(IHT)算法总结 斜风细雨作小寒,淡烟疏柳媚晴滩.入淮清洛渐漫漫. 雪沫乳花浮午盏,蓼茸蒿笋试春盘.人间有味是清欢. ---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法 ...
- ICP算法(迭代最近点)
参考博客:http://www.cnblogs.com/21207-iHome/p/6034462.html 最近在做点云匹配,需要用c++实现ICP算法,下面是简单理解,期待高手指正. ICP算法能 ...
- 吴裕雄 python 机器学习——半监督学习标准迭代式标记传播算法LabelPropagation模型
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...
- OpenACC 书上的范例代码(Jacobi 迭代),part 3
▶ 使用Jacobi 迭代求泊松方程的数值解 ● 使用 data 构件,强行要求 u0 仅拷入和拷出 GPU 各一次,u1 仅拷入GPU 一次 #include <stdio.h> #in ...
随机推荐
- IIS 添加二级应用程序
1.在原有的站点上添加虚拟目录 2.转换成应用程序
- Python之带有外部状态的生成器函数
带有外部状态的生成器函数,也就是你的生成器暴露外部状态给用户解决: 定义一个类,然后把生成器函数放到 __iter__() 方法中过去 定义一个类,然后把生成器函数放到 __iter__() 方法中过 ...
- Gradle中的GroupID和ArtifactID指的是什么?
GroupId和ArtifactId被统称为“坐标”是为了保证项目唯一性而提出的,如果你要把你项目弄到maven本地仓库去,你想要找到你的项目就必须根据这两个id去查找. GroupId一般分为多个段 ...
- java String练习题
package java07; /* 题目: 定义一个方法,把数组{1,2,3}按照指定格式拼接成一个字符串,格式参照如下:[word1#word2#word3] 思路: 1.首先准备一个int[]数 ...
- NIO摘录
NIO,一种基于通道和缓冲区的I/O方式,可以使用native函数库直接分配堆外内存,然后通过一个存储在java 堆的DirectBteBuffer对象作为这块内存的引用进行操作,避免了再java堆和 ...
- 前端每日实战:63# 视频演示如何用纯 CSS 创作一台烤面包机
效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/OEBJRN 可交互视频 此视频是可 ...
- java之重装系统重新配置环境变量 jdk、eclipse、idea、Oracle、svn、gitlab等环境变量的安装
前言:由于公司电脑进行统一版本升级,需要重装系统(只对C盘做升级),记录一下踩过的坑! 首先理一下思路,看那些东西需要做: 1.jdk及其环境变量 2.eclipse(文件夹版的需要运行项目进行测试) ...
- Linux系统下安装JDK及环境配置
第一种属于傻瓜式安装,一键安装即可(yum安装): 第二种手动安装,需要自己去Oracle官网下载需要的jdk版本(需官网注册登录才可以下载),然后解压并配置环境. 一.yum一键安装1.首先执行以下 ...
- 双十一高并发场景背后的数据库RDS技术揭秘
[战报]11月11日聚石塔(阿里云数据库RDS产品形态)峰值QPS突破X00w,Proxy 峰值QPS超过X00w. 双十一就要来了,全世界都为其疯狂,但是在双十一抢购中经常会出现几万人抢一个红包或者 ...
- SQLserver查询作业、视图、函数、存储过程中的关键字
一.查询视图.函数.存储过程中的关键字 SELECT a.name,a.[type],b.[definition] FROM sys.all_objects a,sys.sql_modules b W ...