spark日志+hivesql
windows本地读取hive,需要在resource里面将集群中的hive-site.xml下载下来。
<?xml version="1.0" encoding="UTF-8"?>
<!--Autogenerated by Cloudera Manager-->
<configuration>
<property>
<name>hive.metastore.local</name>
<value>false</value>
</property>
<property>
<name>hive.metastore.uris</name>
<value>thrift://bn00:9083</value>
</property>
<property>
<name>hive.metastore.client.socket.timeout</name>
<value>300</value>
</property>
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/user/hive/warehouse</value>
</property>
<property>
<name>hive.warehouse.subdir.inherit.perms</name>
<value>true</value>
</property>
<property>
<name>hive.auto.convert.join</name>
<value>true</value>
</property>
<property>
<name>hive.auto.convert.join.noconditionaltask.size</name>
<value>20971520</value>
</property>
<property>
<name>hive.optimize.bucketmapjoin.sortedmerge</name>
<value>false</value>
</property>
<property>
<name>hive.smbjoin.cache.rows</name>
<value>10000</value>
</property>
<property>
<name>hive.server2.logging.operation.enabled</name>
<value>true</value>
</property>
<property>
<name>hive.server2.logging.operation.log.location</name>
<value>/var/log/hive/operation_logs</value>
</property>
<property>
<name>mapred.reduce.tasks</name>
<value>-1</value>
</property>
<property>
<name>hive.exec.reducers.bytes.per.reducer</name>
<value>67108864</value>
</property>
<property>
<name>hive.exec.copyfile.maxsize</name>
<value>33554432</value>
</property>
<property>
<name>hive.exec.reducers.max</name>
<value>1099</value>
</property>
<property>
<name>hive.vectorized.groupby.checkinterval</name>
<value>4096</value>
</property>
<property>
<name>hive.vectorized.groupby.flush.percent</name>
<value>0.1</value>
</property>
<property>
<name>hive.compute.query.using.stats</name>
<value>true</value>
</property>
<property>
<name>hive.vectorized.execution.enabled</name>
<value>true</value>
</property>
<property>
<name>hive.vectorized.execution.reduce.enabled</name>
<value>false</value>
</property>
<property>
<name>hive.merge.mapfiles</name>
<value>true</value>
</property>
<property>
<name>hive.merge.mapredfiles</name>
<value>false</value>
</property>
<property>
<name>hive.cbo.enable</name>
<value>true</value>
</property>
<property>
<name>hive.fetch.task.conversion</name>
<value>minimal</value>
</property>
<property>
<name>hive.fetch.task.conversion.threshold</name>
<value>268435456</value>
</property>
<property>
<name>hive.limit.pushdown.memory.usage</name>
<value>0.1</value>
</property>
<property>
<name>hive.merge.sparkfiles</name>
<value>true</value>
</property>
<property>
<name>hive.merge.smallfiles.avgsize</name>
<value>16777216</value>
</property>
<property>
<name>hive.merge.size.per.task</name>
<value>268435456</value>
</property>
<property>
<name>hive.optimize.reducededuplication</name>
<value>true</value>
</property>
<property>
<name>hive.optimize.reducededuplication.min.reducer</name>
<value>4</value>
</property>
<property>
<name>hive.map.aggr</name>
<value>true</value>
</property>
<property>
<name>hive.map.aggr.hash.percentmemory</name>
<value>0.5</value>
</property>
<property>
<name>hive.optimize.sort.dynamic.partition</name>
<value>false</value>
</property>
<property>
<name>hive.execution.engine</name>
<value>mr</value>
</property>
<property>
<name>spark.executor.memory</name>
<value>1277794713</value>
</property>
<property>
<name>spark.driver.memory</name>
<value>966367641</value>
</property>
<property>
<name>spark.executor.cores</name>
<value>6</value>
</property>
<property>
<name>spark.yarn.driver.memoryOverhead</name>
<value>102</value>
</property>
<property>
<name>spark.yarn.executor.memoryOverhead</name>
<value>135</value>
</property>
<property>
<name>spark.dynamicAllocation.enabled</name>
<value>true</value>
</property>
<property>
<name>spark.dynamicAllocation.initialExecutors</name>
<value>1</value>
</property>
<property>
<name>spark.dynamicAllocation.minExecutors</name>
<value>1</value>
</property>
<property>
<name>spark.dynamicAllocation.maxExecutors</name>
<value>2147483647</value>
</property>
<property>
<name>hive.metastore.execute.setugi</name>
<value>true</value>
</property>
<property>
<name>hive.support.concurrency</name>
<value>true</value>
</property>
<property>
<name>hive.zookeeper.quorum</name>
<value>bn00,bn01,bn02</value>
</property>
<property>
<name>hive.zookeeper.client.port</name>
<value>2181</value>
</property>
<property>
<name>hive.zookeeper.namespace</name>
<value>hive_zookeeper_namespace_hive</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>bn00,bn01,bn02</value>
</property>
<property>
<name>hbase.zookeeper.property.clientPort</name>
<value>2181</value>
</property>
<property>
<name>hive.cluster.delegation.token.store.class</name>
<value>org.apache.hadoop.hive.thrift.MemoryTokenStore</value>
</property>
<property>
<name>hive.server2.enable.doAs</name>
<value>true</value>
</property>
<property>
<name>hive.server2.use.SSL</name>
<value>false</value>
</property>
<property>
<name>spark.shuffle.service.enabled</name>
<value>true</value>
</property>
</configuration>
代码部分如下:
import java.util.ArrayList;
import java.util.List;
import org.apache.log4j.Level;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.hive.HiveContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import scala.Tuple2;
import com.google.common.collect.Lists;
public class HiveAndSparkSQLApp {
private static final Logger logger = LogManager.getLogger(App.class);
static {
// 设置日志级别清理
org.apache.log4j.Logger.getLogger("org.apache.spark").setLevel(Level.WARN);
org.apache.log4j.Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF);
}
@SuppressWarnings("serial")
public static void main(String[] args) {
// 调试环境,spark UI:http://localhost:4040/executors/
SparkConf conf = new SparkConf().setMaster("local[4]").setAppName("test")
.set("spark.testing.memory", "1147480000");
// spark streaming context
JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));
// spark hive context
final HiveContext hiveContext = new HiveContext(jssc.sparkContext());
// spark SQL context
// final SQLContext sqlContext = SQLContext.getOrCreate(jssc.sparkContext().sc());
/**
* 远程的socket监听
* 在节点上,执行nc -lk 9998
* 若节点上没有安装nc工具,执行yum install nc.x86_64
* 之后直接发送消息即可
*/
JavaDStream<String> lines = jssc.socketTextStream("node0", 9998);
lines.foreachRDD(new VoidFunction<JavaRDD<String>>() {
@Override
public void call(JavaRDD<String> rdd) throws Exception {
// SQLContext sqlContext = SQLContext.getOrCreate(rdd.context());
JavaRDD<Row> rowRDD = rdd.map(new Function<String, Row>() {
@Override
public Row call(String t) throws Exception {
String[] splited = new String[] { System.currentTimeMillis() + "",
System.currentTimeMillis() + "", System.currentTimeMillis() + "" };
// 1.Row构建
return RowFactory.create(Long.valueOf(splited[0]), splited[1], Long.valueOf(splited[2]));
}
});
// 2.DF metadata专用结构体
// 对Row具体指定元数据信息。
List<StructField> structFields = new ArrayList<StructField>();
// 列名称 列的具体类型(Integer Or String) 是否为空一般为true,实际在开发环境是通过for循环,而不是手动添加
structFields.add(DataTypes.createStructField("id", DataTypes.LongType, true));
structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true));
structFields.add(DataTypes.createStructField("age", DataTypes.LongType, true));
// 构建StructType,用于最后DataFrame元数据的描述
StructType structType = DataTypes.createStructType(structFields);
// 3.构建DF
DataFrame personsDF = hiveContext.createDataFrame(rowRDD, structType);
// 4.注册为临时表
personsDF.registerTempTable("test");
DataFrame result = hiveContext.sql("select * from test");
/**
* 对结果进行处理,包括由DataFrame转换成为RDD<Row>,以及结果的持久化
*/
List<Row> listRow = result.javaRDD().collect();
for (Row row : listRow) {
logger.error("row:" + row);
}
hiveContext.sql("insert into recommendation_system.t111 select id from test");
}
});
// 测试流,需要存在感~
lines.flatMap(new FlatMapFunction<String, String>() {
public Iterable<String> call(String msg) {
System.err.println(msg);
logger.error(msg);
return Lists.newArrayList(" ".split(msg));
}
}).mapToPair(new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String t) throws Exception {
return new Tuple2<String, Integer>(t, 1);
}
}).reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
}).print();
jssc.start();
jssc.awaitTermination();
}
}
spark日志+hivesql的更多相关文章
- Spark日志级别修改
摘要 在学习使用Spark的过程中,总是想对内部运行过程作深入的了解,其中DEBUG和TRACE级别的日志可以为我们提供详细和有用的信息,那么如何进行合理设置呢,不复杂但也绝不是将一个INFO换为TR ...
- Spark日志,及设置日志输出级别
Spark日志,及设置日志输出级别 1.全局应用设置 2.局部应用设置日志输出级别 3.Spark log4j.properties配置详解与实例(摘录于铭霏的记事本) 文章内容来源: 作者:大葱拌豆 ...
- 开启spark日志聚集功能
spark监控应用方式: 1)在运行过程中可以通过web Ui:4040端口进行监控 2)任务运行完成想要监控spark,需要启动日志聚集功能 开启日志聚集功能方法: 编辑conf/spark-env ...
- Spark日志清洗
日志数据清洗,主要采用spark 的定时任务,清洗出有效数据,并保存到hive数据仓库中存储.常用流程如下: 参考:https://gaojianhua.gitbooks.io/bigdata-wik ...
- (转)spark日志配置
一.第一部分 1.spark2.1与hadoop2.7.3集成,spark on yarn模式下,需要对hadoop的配置文件yarn-site.xml增加内容,如下: <property> ...
- spark日志配置及问题排查方式。
此文已由作者岳猛授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 任何时候日志都是定位问题的关键,spark也不会例外,合适的配置和获取spark的driver,am,及exe ...
- 设置Spark日志级别
编辑Spark中conf中配置文件log4j.properties 设置日志级别为WARN,即:log4j.rootCategory=WARN, console
- Apache Spark技术实战之9 -- 日志级别修改
摘要 在学习使用Spark的过程中,总是想对内部运行过程作深入的了解,其中DEBUG和TRACE级别的日志可以为我们提供详细和有用的信息,那么如何进行合理设置呢,不复杂但也绝不是将一个INFO换为TR ...
- Spark2.3(四十):如何使用java通过yarn api调度spark app,并根据appId监控任务,关闭任务,获取任务日志
背景: 调研过OOZIE和AZKABA,这种都是只是使用spark-submit.sh来提交任务,任务提交上去之后获取不到ApplicationId,更无法跟踪spark application的任务 ...
随机推荐
- HGOI20190809 省常中互测2
Problem A 时之终结 构造一个含有$n$个节点的无重边无自环的有向图, 使得从$1$出发,每一次经过一条$(u,v) (u < v)$的边到达节点$n$的方案恰好有$y$种. 对于$10 ...
- Springboot(九).多文件上传下载文件(并将url存入数据库表中)
一. 文件上传 这里我们使用request.getSession().getServletContext().getRealPath("/static")的方式来设置文件的存储 ...
- mui 二维码扫描功能
mui 扫一扫识别二维码 以及多次扫码后从结果页返回时黑屏问题解决 扫一扫页面全部代码 <!doctype html><html> <head> ...
- [CSP-S模拟测试]:最大值(数学+线段树)
题目背景 $Maxtir$最喜欢最大值. 题目传送门(内部题128) 输入格式 第$1$行输入四个正整数$n,m,q$. 第$2$至$n+1$行中,第$i+1$行输入魔法晶石$i$的三种属性$(x_i ...
- jQuery动态添加和删除表格行
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- spark中使用的内存文件系统-Tachyon FS 简介
转自:http://blog.csdn.net/u014252240/article/details/41810849 发布人:南京大学PASA大数据实验室顾荣 1. Tachyon是什么 Tach ...
- datagrid数据清空
方法一: 不管是url方式还是加载本地数据的方式,均可以直接使用loadData方法清空数据,一行代码就可以清空: $('#tt').datagrid('loadData',{total:0,rows ...
- 自定义view防支付成功页面
package com.loaderman.customviewdemo; import android.content.Context; import android.graphics.Canvas ...
- python UI自动化之JS定位
1.话不多说,直接贴入代码 上面的 document.getElementById 可以替换成别的定位方式,比如: 通过name获取:document.getElementsByName 通过标签获取 ...
- linux计划crontab
linux计划crontab 启动crontab服务 一般启动服务用 /sbin/service crond start 若是根用户的cron服务可以用 sudo service crond sta ...