bzoj1023: [SHOI2008]cactus仙人掌图
学习了一下圆方树。
圆方树是一种可以处理仙人掌的数据结构,具体见这里:http://immortalco.blog.uoj.ac/blog/1955
简单来讲它是这么做的:用tarjan找环,然后对每个环建立一个新点,然后将环上的边删去,并环上的每个点都连到新点上。这样我们就可以把一个环缩成一个菊花图,重复这么做,一棵仙人掌就变成一棵树啦!这棵树就叫做圆方树,其中原点叫圆点,新点叫方点。
圆方树和原仙人掌很相似,而且它又是一棵树,于是我们就可以在上面dp啦!不过要注意的是对于方点的处理,不能直接更新,要作一个单调队列,因为环上有两种走法么。
期间调了很久,而且我还不会生成数据,orz cbh。
tarjan求DCC都不会写了,我好弱啊~
#include <bits/stdc++.h>
#define N 110000
using namespace std;
int n, m, nn;
vector <int> V[N], W[N];
int low[N], dfn[N], dfsnum;
int f[N];
int ans;
int shed[N], top;
deque <int> Q;
void tarjan(int t, int f)
{
dfn[t] = low[t] = ++ dfsnum;
shed[++ top] = t;
for (int p = ; p < V[t].size(); ++ p)
if (V[t][p] != f) if (!dfn[V[t][p]])
{
tarjan(V[t][p], t);
low[t] = min(low[t], low[V[t][p]]);
if (low[V[t][p]] >= dfn[t])
{
if (shed[top] != V[t][p])
{
nn ++;
int cur;
do
{
//W[shed[top]].push_back(nn);
W[nn].push_back(cur = shed[top]);
shed[top --] = ;
}
while (cur != V[t][p]);
W[t].push_back(nn);
//W[nn].push_back(t);
}
else
{
W[t].push_back(shed[top]);
//W[shed[top]].push_back(t);
shed[top --] = ;
}
}
}
else low[t] = min(low[t], dfn[V[t][p]]);
}
void dfs(int t)
{
f[t] = ;
int s = W[t].size();
if (t > n)
{
for (int p = ; p < s; ++ p)
dfs(W[t][p]);
for (int q = ; q < (s + ) / ; ++ q)
{
while (!Q.empty() && f[W[t][Q.back()]] + Q.back() < f[W[t][q]] + q) Q.pop_back();
Q.push_back(q);
}
for (int p = , q = (s + ) / ; p < s; ++ p, q = (q == s? : q + ) )
{
if (q != s)
{
while (!Q.empty() && f[W[t][Q.back()]] + (Q.back() < p? Q.back() + s + - p: Q.back() - p) < f[W[t][q]] + (q < p? q + s + - p: q - p)) Q.pop_back();
Q.push_back(q);
}
if (Q.front() == p) Q.pop_front();
if (!Q.empty()) ans = max(ans, f[W[t][p]] + f[W[t][Q.front()]] + (Q.front() > p? Q.front() - p: Q.front() + s + - p));
}
for (int p = ; p < (s + ) / ; ++ p) f[t] = max(f[t], f[W[t][p]] + p);
for (int p = (s + ) / ; p < s; ++ p) f[t] = max(f[t], f[W[t][p]] + s - - p);
Q.clear();
}
else
{
int mx1 = , mx2 = ;
for (int p = ; p < s; ++ p)
{
dfs(W[t][p]);
if (f[W[t][p]] + > mx1) mx2 = mx1, mx1 = f[W[t][p]] + ;
else if (f[W[t][p]] + > mx2) mx2 = f[W[t][p]] + ;
}
ans = max(ans, mx1 + mx2);
f[t] = mx1;
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = ; i <= m; ++ i)
{
int k, a;
scanf("%d%d", &k, &a);
for (int i = ; i <= k; ++ i)
{
int b;
scanf("%d", &b);
V[a].push_back(b);
V[b].push_back(a);
a = b;
}
}
nn = n;
tarjan(, );
//puts("haha");
dfs();
printf("%d\n", ans);
}
bzoj1023: [SHOI2008]cactus仙人掌图的更多相关文章
- bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图
http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...
- BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点 ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌dp)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3467 Solved: 1438[Submit][Status][Discuss] Descripti ...
- BZOJ1023[SHOI2008]cactus仙人掌图 【仙人掌DP】
题目 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌 图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路. 举例来说 ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...
- [bzoj1023][SHOI2008]cactus 仙人掌图 (动态规划)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回 ...
- 2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)
传送门 求仙人掌的直径. 感觉不是很难. 分点在环上面和不在环上分类讨论. 不在环上直接树形dpdpdp. 然后如果在环上讨论一波. 首先对环的祖先有贡献的只有环上dfsdfsdfs序最小的点. 对答 ...
- bzoj1023 [SHOI2008]cactus仙人掌图 & poj3567 Cactus Reloaded——求仙人掌直径
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1023 http://poj.org/problem?id=3567 仙人掌!直接模仿 ...
- bzoj千题计划224:bzoj1023: [SHOI2008]cactus仙人掌图
又写了一遍,发出来做个记录 #include<cstdio> #include<algorithm> #include<iostream> using namesp ...
随机推荐
- 错题分析--ASP.NET
解析:支架模板支持的类型包括Empty.Create.Delete.Details.Edit.List 解析:Spring支持4种依赖检查:默认的是none.因此说法不正确的结果是D 解析:各层之间不 ...
- VS2012配置OpenCV、GDAL开发环境
VS2012和opencv-2.4.10 第一步:配置之前的准备工作. 完成VS2012的安装,以及opencv-2.4.10的下载和文件提取, 双击此文件,设置文件路径,即可得到提取文件,提取后的文 ...
- rpc框架之avro 学习 1 - hello world
avro是hadoop的一个子项目,提供的功能与thrift.Protocol Buffer类似,都支持二进制高效序列化,也自带RPC机制,但是avro使用起来更简单,无需象thrift那样生成目标语 ...
- Mac Pro 下使用svn
Mac 默认都会安装有svn 1.在项目下使用命令启动svn服务---svnserve -d -r 输入下列指令:svnserve -d -r /Users/apple/svn 或者输入:svnser ...
- async/await Task Timeout
async/await Task Timeout 在日常的电脑使用过程中,估计最难以忍受的就是软件界面"卡住""无响应",在我有限的开发生涯中一直都是在挑战 它 ...
- C#基础系列——一场风花雪月的邂逅:接口和抽象类
前言:最近一个认识的朋友准备转行做编程,看他自己边看视频边学习,挺有干劲的.那天他问我接口和抽象类这两个东西,他说,既然它们如此相像, 我用抽象类就能解决的问题,又整个接口出来干嘛,这不是误导初学者吗 ...
- 梦想成真,喜获微软MVP奖项,微软MVP FAQ?
之前一直很钦佩那些MVP获奖者,想着自己有一天也能拿到该多好,就在10月1日邮箱收到了微软的邮件,当选了2016年10月份的MVP.今天主要分享一下获奖的喜悦也分享一下如何获得MVP奖项. 什么是微软 ...
- javascript数据类型判断
javascript基本数据类型:原始类型 和 引用类型 原始类型(简单数据类型):String,Number,Boolean,Undefined,Null,Symbol(ES6新增) 引用类型( ...
- Webpack 中文指南
来源于:http://webpackdoc.com/index.html Webpack 是当下最热门的前端资源模块化管理和打包工具.它可以将许多松散的模块按照依赖和规则打包成符合生产环境部署的前端资 ...
- Java链栈
package com.lxm.customDataStructure; public class LinkStack<T>{ class Node<T>{ T data; N ...