k-folder cross-validation:
k个子集,每个子集均做一次测试集,其余的作为训练集。交叉验证重复k次,每次选择一个子集作为测试集,并将k次的平均交叉验证识别正确率作为结果。
优点:所有的样本都被作为了训练集和测试集,每个样本都被验证一次。10-folder通常被使用。

K * 2 folder cross-validation
是k-folder cross-validation的一个变体,对每一个folder,都平均分成两个集合s0,s1,我们先在集合s0训练用s1测试,然后用s1训练s0测试。
优点是:测试和训练集都足够大,每一个个样本都被作为训练集和测试集。一般使用k=10

least-one-out cross-validation(loocv)
假设dataset中有n个样本,那LOOCV也就是n-CV,意思是每个样本单独作为一次测试集,剩余n-1个样本则做为训练集。
优点:
1)每一回合中几乎所有的样本皆用于训练model,因此最接近母体样本的分布,估测所得的generalization error比较可靠。
2)实验过程中没有随机因素会影响实验数据,确保实验过程是可以被复制的。
但LOOCV的缺点则是计算成本高

十折交叉验证:10-fold cross validation

用来测试算法准确性。是常用的测试方法。将数据集分成十分,轮流将其中9份作为训练数据,1份作为测试数据,进行试验。每次试验都会得出相应的正确率(或差错率)。10次的结果的正确率(或差错率)的平均值作为对算法精度的估计,一般还需要进行多次10折交叉验证(例如10次10折交叉验证),再求其均值,作为对算法准确性的估计。

使用libsvm进行cross validation

libsvm提供了svm.svm_cross_validation(svm_problem prob, svm_parameter param, int nr_folder, double[] target)

其中target用于保存验证分类结果的输出,十分巧妙,因为根据交叉验证规则,每个输入样本都会执行一次预测。

            double[] target = new double[labels.length];

            svm.svm_cross_validation(problem, param, 10, target);
double correctCounter = 0;
for (int i = 0; i < target.length; i++) {
if (target[i] == labels[i]) {
correctCounter++;
}
}

cross validation的更多相关文章

  1. 交叉验证(Cross Validation)原理小结

    交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏. ...

  2. 交叉验证 Cross validation

    来源:CSDN: boat_lee 简单交叉验证 hold-out cross validation 从全部训练数据S中随机选择s个样例作为训练集training set,剩余的作为测试集testin ...

  3. Cross Validation done wrong

    Cross Validation done wrong Cross validation is an essential tool in statistical learning 1 to estim ...

  4. 交叉验证(cross validation)

    转自:http://www.vanjor.org/blog/2010/10/cross-validation/ 交叉验证(Cross-Validation): 有时亦称循环估计, 是一种统计学上将数据 ...

  5. 10折交叉验证(10-fold Cross Validation)与留一法(Leave-One-Out)、分层采样(Stratification)

    10折交叉验证 我们构建一个分类器,输入为运动员的身高.体重,输出为其从事的体育项目-体操.田径或篮球. 一旦构建了分类器,我们就可能有兴趣回答类似下述的问题: . 该分类器的精确率怎么样? . 该分 ...

  6. Cross Validation(交叉验证)

    交叉验证(Cross Validation)方法思想 Cross Validation一下简称CV.CV是用来验证分类器性能的一种统计方法. 思想:将原始数据(dataset)进行分组,一部分作为训练 ...

  7. S折交叉验证(S-fold cross validation)

    S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...

  8. 交叉验证(Cross Validation)简介

    参考    交叉验证      交叉验证 (Cross Validation)刘建平 一.训练集 vs. 测试集 在模式识别(pattern recognition)与机器学习(machine lea ...

  9. cross validation笔记

    preface:做实验少不了交叉验证,平时常用from sklearn.cross_validation import train_test_split,用train_test_split()函数将数 ...

  10. 几种交叉验证(cross validation)方式的比较

    模型评价的目的:通过模型评价,我们知道当前训练模型的好坏,泛化能力如何?从而知道是否可以应用在解决问题上,如果不行,那又是哪里出了问题? train_test_split 在分类问题中,我们通常通过对 ...

随机推荐

  1. 利用sort对数组快速排序

    // sort内部使用快速排序,每次比较两个元素大小的时候如果没有参数,则直接判断字母表,如果有参数,则把正在比较的两个参数传入自定义方法并调用(正在比较的两个数会传给自定义方法的v1.v2),如果返 ...

  2. Web打印的处理 方案之普通报表打印

    做过许多 的Web项目,大多数在打印页面内容的时刻 ,采用的都是议决 Javascript调用系统内置的打印要领 执行 打印,也就是调用 PrintControl.ExecWB(?,?)实现直接打印和 ...

  3. BZOJ4154:[IPSC2015]Generating Synergy

    浅谈\(K-D\) \(Tree\):https://www.cnblogs.com/AKMer/p/10387266.html 题目传送门:https://lydsy.com/JudgeOnline ...

  4. Visualforce Page超链接

    Salesforce开发者文档:https://developer.salesforce.com/docs/atlas.en-us.pages.meta/pages/pages_quick_start ...

  5. Azure VMSS ---- PowerShell创建标准镜像的VMSS集群

    VMSS的创建可以采用Portal.Powershell.Azure CLI或者Template. 但目前Portal创建有很多限制,本文将介绍如何用PowerShell来创建VMSS的集群. 具体的 ...

  6. Mybatis代码学习

    Mybatis架构学习 MyBatis 是支持定制化 SQL.存储过程以及高级映射的持久层框架.MyBatis 封装了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.可以对配置和原生Map使用 ...

  7. eclipse下不能编译.ftl文件,会报错的解决方法

    先安装一个插件 右击ftl文件,选择open with 但是没有freeMarker这个选项,如果有直接打开,如果没有则需要下载相关插件. 要安装一个freemarker的插件,才可以编辑FTL文件, ...

  8. MyBatis基于注解----增删改查

    select sysdate from dual; --账户表 --账户编号,账户卡号,账户密码,账户余额,账户状态,创建时间 drop table account; create table acc ...

  9. volatile语义

    volatile在Java内存模型(JMM)中,保证共享变量对所有线程可见,但不保证原子性.volatile语义是同步,通过共享变量的方式,完成线程间的通信. 为什么需要volatile Java内存 ...

  10. 配置mysql 问题解决

    问题 [Warning] '--skip-locking' is deprecated and will be removed in a future release. Please use '--s ...