BZOJ1799 [Ahoi2009]self 同类分布[数位DP]
求出[a,b]中各位数字之和能整除原数的数的个数。
有困难的一道题。被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位,要求这剩下的和是$sum$,并且其对$sum$取模是$rest$的方案数。
感觉也讲不出什么道理来,真的是。。经验问题啊。。。当时数位dp不太会,现在看来稍微好些了。或者也可以从最高位往后看,设前面填好的高位组成的各位和是sum,mod枚举剩rest,到最低位再检验正确性。
转移(向下一层dp)时就是把当前填的这一位数字从sum减掉,并且rest取$rest-i*10^{len-1}%p$,比如我一开始要求rest是0,第一位填3,后面的数要求的rest就变了。为什么是前面那个式子,这个可以推一下,很好推,就是剩余系相关的数学内容。然后每种sum都讨论一下,另外记搜可以带点剪枝什么的,卡卡就过啦。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define ddbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const ll bin[]={,,,1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9,1e10,1e11,1e12,1e13,1e14,1e15,1e16,1e17,1e18};
ll l,r,f[][][],p;
int flag,b[];
inline int mod(ll x){return x<?x+p:x;}
ll dp(int len,int s,int rest,bool limit){
if(!len){if(!s&&!rest)return ;else return ;}
if(s<||*len<s)return ;//剪枝
if(!limit&&~f[len][s][rest])return f[len][s][rest];
int num=limit?b[len]:;ll ret=;
for(register int i=;i<=num;++i)ret+=dp(len-,s-i,mod(rest-i*1ll*bin[len]%p),limit&&(i==num));
return limit?ret:f[len][s][rest]=ret;
}
inline ll solve(ll x){
ll k=,ret=;while(x)b[++k]=x%,x/=;
for(p=;p<=k*;++p)memset(f,-,sizeof f),ret+=dp(k,p,,);
return ret;
} int main(){//freopen("test.in","r",stdin);freopen("test.out","w",stdout);
read(l),read(r);if(l>=1e18)return printf("1\n"),;if(r>=1e18)--r,++flag;
return printf("%lld\n",solve(r)-solve(l-)+flag),;
}
BZOJ1799 [Ahoi2009]self 同类分布[数位DP]的更多相关文章
- bzoj 1799: [Ahoi2009]self 同类分布 数位dp
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...
- [BZOJ1799][AHOI2009]同类分布(数位DP)
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MBSubmit: 1635 Solved: 728[Submit][S ...
- [BZOJ1799][Ahoi2009]self 同类分布(数位dp)
题目描述 给出两个数 a,ba,b ,求出 [a,b][a,b] 中各位数字之和能整除原数的数的个数. 输入输出格式 输入格式: 一行,两个整数 aa 和 bb 输出格式: 一个整数,表示答案 输入输 ...
- 【数位dp】bzoj1799: [Ahoi2009]self 同类分布
各种奇怪姿势的数位dp Description 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. Sample Input 10 19 Sample Output 3 HINT [约束条 ...
- BZOJ1799 self 同类分布 数位dp
BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...
- bzoj1799同类分布——数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1799 数位DP. 1.循环方法 预处理出每个位数上,和为某个数,模某个数余某个数的所有情况: ...
- [luogu4127 AHOI2009] 同类分布 (数位dp)
传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...
- bzoj1799: [Ahoi2009]self 同类分布
数位dp 先从1到162枚举各位数之和 s[i][j][k][l]表示i位数,第一位小于等于j,当前各位数字和为k,当前取模余数为l的方案数 然后脑补一下转移就行了 详见代码 #include < ...
- BZOJ 1799 同类分布(数位DP)
给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1<=a<=b<=1e18. 注意到各位数字之和最大是153.考虑枚举这个东西.那么需要统计的是[0,a-1]和[0,b ...
随机推荐
- List和Set排序的实现
List.Set.Map的区别 List和Set继承了Collection接口. List以特定索引来存取元素,可以有重复元素.Set不能存放重复元素(用对象的equals()方法来区分元素是否重复) ...
- 在fc6上搭tftpd
公司的开发环境依然停留在fc6上,,,,对..很旧,旧到想死. 我在没有进一步熟悉ubuntu的基础上,为了保持ABI一致. 只能依旧在FC6 上开发. 可是现在发现开发完成,我要在fc6上文件到wi ...
- plsql 详细安装及汉化步骤
方法/步骤 双击运行plsqldev715 安装完成后我们装中文补丁: 双击运行‘Chinese’应用程序 找到PLSQL的安装目录添加进来 中文补丁安装完成后我们需要进行orcl的配置,配置好才 ...
- IIS架构介绍
IIS7及以上版本提供的请求-处理架构包括以下内容: Windows Process Activation Service(WAS)可以让站点支持更多协议,不仅仅是HTTP和HTTPS 可以通过增加或 ...
- how to add them, how to multiply them
http://www.physics.miami.edu/~nearing/mathmethods/operators.pdf
- DDD开源框架
DDD开源框架: ABP ENODE https://github.com/VirtoCommerce/vc-community APWorks https://github.com/daxnet/B ...
- sublime运行Python
1.首先安装Python 我这里安装的是Python的3.7版本. 这里有两种安装方式 第一种: 默认路径安装,勾选添加到path复选框(这种情况,sublime可以直接运行Python了) 第二种: ...
- 项目中nodejs包高效升级插件npm-check-updates
nodejs包高效升级插件npm-check-updates 最近想升级npm的包 1.//常规的包升级方式/2.npm update (包) 到npm一搜发现了一个很好的升级工具 npm-check ...
- LeetCode:柠檬水找零【860】
LeetCode:柠檬水找零[860] 题目描述 在柠檬水摊上,每一杯柠檬水的售价为 5 美元. 顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯. 每位顾客只买一杯柠檬水,然后向 ...
- 使用documentFragment
function insertHtml(range, val) { var doc = range.doc, frag = doc.createDocumentFragment(); K('@' + ...