CF1076D Edge Deletion 最短路径树+bfs
题目描述
You are given an undirected connected weighted graph consisting of n n n vertices and m m m edges. Let's denote the length of the shortest path from vertex 1 1 1 to vertex i i i as di d_i di .
You have to erase some edges of the graph so that at most k k k edges remain. Let's call a vertex i i i good if there still exists a path from 1 1 1 to i i i with length di d_i di after erasing the edges.
Your goal is to erase the edges in such a way that the number of good vertices is maximized.
输入输出格式
输入格式:
The first line contains three integers n n n , m m m and k k k ( 2≤n≤3⋅105 2 \le n \le 3 \cdot 10^5 2≤n≤3⋅105 , 1≤m≤3⋅105 1 \le m \le 3 \cdot 10^5 1≤m≤3⋅105 , n−1≤m n - 1 \le m n−1≤m , 0≤k≤m 0 \le k \le m 0≤k≤m
) — the number of vertices and edges in the graph, and the maximum
number of edges that can be retained in the graph, respectively.
Then m m m lines follow, each containing three integers x x x , y y y , w w w ( 1≤x,y≤n 1 \le x, y \le n 1≤x,y≤n , x≠y x \ne y x≠y , 1≤w≤109 1 \le w \le 10^9 1≤w≤109 ), denoting an edge connecting vertices x x x and y y y and having weight w w w .
The given graph is connected (any vertex can be reached from any
other vertex) and simple (there are no self-loops, and for each
unordered pair of vertices there exists at most one edge connecting
these vertices).
输出格式:
In the first line print e e e — the number of edges that should remain in the graph ( 0≤e≤k 0 \le e \le k 0≤e≤k ).
In the second line print e e e distinct integers from 1 1 1 to m m m
— the indices of edges that should remain in the graph. Edges are
numbered in the same order they are given in the input. The number of
good vertices should be as large as possible.
输入输出样例
4 5 2
4 1 8
2 4 1
2 1 3
3 4 9
3 1 5
2
3 2 n 个点 m条边的连通图,只能最多保留K条边,最后要满足从1出发到其他节点最短距离不变的点最多,问方案(边)
先 dijkstra 一下,保存一下父亲和儿子节点以及边的编号;
最后 bfs一下,每次如果此时的 K>0,那么就选择改边;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 400005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n, m, k;
int head[maxn<<1];
struct node {
int to;
ll dis;
node(){}
node(int to,ll dis):to(to),dis(dis){} bool operator < (const node&rhs)const {
return dis > rhs.dis;
}
}edge[maxn<<1]; struct Edge {
int id;
int v; ll w;
int nxt; Edge(){}
Edge(int id,int v,int w):id(id),v(v),w(w){} }EDGE[maxn<<1]; ll dis[maxn];
bool vis[maxn];
int fath[maxn], fathedge[maxn];
vector<Edge>G[maxn]; void addedge(int i, int u, int v, int w) {
G[u].push_back(Edge(i, v, w)); G[v].push_back(Edge(i, u, w));
} priority_queue<node>pq; void dijkstra() {
memset(dis, 0x3f, sizeof(dis)); ms(vis);
dis[1] = 0; vis[1] = 0;
fath[1] = 1;
pq.push(node(1, 0));
while (!pq.empty()) {
node tmp = pq.top(); pq.pop();
int u = tmp.to;
if (vis[u])continue; vis[u] = 1;
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i].v;
if (dis[v] > dis[u] + (ll)G[u][i].w) {
dis[v] = dis[u] + (ll)G[u][i].w;
fath[v] = u; fathedge[v] = G[u][i].id;
pq.push(node(v, (ll)dis[v]));
}
}
}
} vector<int>son[maxn];
vector<int>res;
queue<int>q; void bfs() {
q.push(1);
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = 0; i < son[u].size(); i++) {
int v = son[u][i];
if (k > 0) {
res.push_back(fathedge[v]); q.push(v); k--;
}
else
break;
}
}
} int main()
{
//ios::sync_with_stdio(0);
rdint(n); rdint(m); rdint(k);
for (int i = 1; i <= m; i++) {
int u, v, w; rdint(u); rdint(v); rdint(w);
addedge(i, u, v, w);
}
dijkstra();
for (int i = 2; i <= n; i++) {
son[fath[i]].push_back(i);
}
bfs();
cout << res.size() << endl;
for (int i = 0; i < res.size(); i++) {
cout << res[i] << ' ';
}
cout << endl;
return 0;
}
CF1076D Edge Deletion 最短路径树+bfs的更多相关文章
- CF1076D Edge Deletion
洛谷传送门 cf传送门 这道题作为div.2的D题,被我一眼秒了我觉得十分荣幸,然后就开始写,然后就写了好久. AC之后看网上的题解,发现好多最短路树的,猛然发现我写的好复杂啊,结果还看到了直接一遍d ...
- CF1076D Edge Deletion 最短路树
问题描述 Codeforces 洛谷(有翻译) 题解 最短路树,是一棵在最短路过程中构建的树. 在\(\mathrm{Dijkstra}\)过程中,如果最终点\(y\)是由点\(x\)转移得到的,则在 ...
- bzoj 4016 [FJOI2014]最短路径树问题(最短路径树+树分治)
4016: [FJOI2014]最短路径树问题 Time Limit: 5 Sec Memory Limit: 512 MBSubmit: 426 Solved: 147[Submit][Stat ...
- Codeforces 1076D Edge Deletion(最短路树)
题目链接:Edge Deletion 题意:给定一张n个顶点,m条边的带权无向图,已知从顶点1到各个顶点的最短路径为di,现要求保留最多k条边,使得从顶点1到各个顶点的最短距离为di的顶点最多.输出m ...
- [BZOJ4016][FJOI2014]最短路径树问题
[BZOJ4016][FJOI2014]最短路径树问题 试题描述 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长 ...
- HDU4871 Shortest-path tree(最短路径树 + 树的点分治)
题目大概要先求一张边有权的图的根为1的最短路径树,要满足根到各点路径序列的字典序最小:然后求这棵最短路径树包含k个结点的最长路径的长度和个数. 首先先构造出这棵字典序最小的最短路径树..好吧,我太傻逼 ...
- POJ3013 Big Christmas Tree(最短路径树)
题目大概说给一张点和边都有权的图,现在要求其一棵以1结点为根的生成树使树的边权和最小,树边权 = 对应的图边权 * 树边末端点为根的子树所有结点对于图顶点的点权和. 要求∑(边权*子树点权和),等价于 ...
- LA 4080 (多源最短路径+边修改+最短路径树)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32266 题目大意:①先求任意两点间的最短路径累加和,其中不连通的边 ...
- [FJOI 2014]最短路径树问题
Description 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长度最短的路径,则选择经过的顶点序列字典序最 ...
随机推荐
- volatile语义
volatile在Java内存模型(JMM)中,保证共享变量对所有线程可见,但不保证原子性.volatile语义是同步,通过共享变量的方式,完成线程间的通信. 为什么需要volatile Java内存 ...
- python ConfigParser 读取配置文件
- xcode中用pods管理第三方库<转>
安装pods :http://www.cnblogs.com/wangluochong/p/5567082.html 史上最详细的CocoaPods安装教程 --------------------- ...
- DAY8-python异常处理
一.什么是异常 异常就是程序运行时发生错误的信号(在程序出现错误时,则会产生一个异常,若程序没有处理它,则会抛出该异常,程序的运行也随之终止),在python中,错误触发的异常如下 而错误分两种 #语 ...
- Hash函数和消息摘要算法
一.Hash函数 哈希函数就是能将任意长度的数据映射为固定长度的数据的函数.哈希函数返回的值被叫做哈希值.哈希码.散列,或者直接叫做哈希. 二.消息摘要 将长度不固定的消息(message)作为输 ...
- xftp permission is not allowed
上传文件时出现此项错误: permission is not allowed, 原因: 1.可能vsfptd没有配置好 写权限没有开启 2.可能是当前的目录权限,上传的用户不具有: 比如:用户hado ...
- 《Android应用性能优化》 第6章 性能评测和剖析
1.时间测量 System.currentTimeMillis 精读和准确度可能不够:更改系统时间会影响结果:UTC时间1970/1/1 00:00:00到现在的毫秒数 System.nanoTime ...
- JS继承方式详解
js继承的概念 js里常用的如下两种继承方式: 原型链继承(对象间的继承) 类式继承(构造函数间的继承) 由于js不像java那样是真正面向对象的语言,js是基于对象的,它没有类的概念.所以,要想实现 ...
- str_place()替换函数
str_replace() 函数使用一个字符串替换字符串中的另一些字符. 注释:该函数对大小写敏感.请使用 str_ireplace() 执行对大小写不敏感的搜索. echo str_replace( ...
- C++输出斐波那契数列的几种方法
定义: 斐波那契数列指的是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 这个数列从第三项开始,每一项都等于前两项之和. 以输出斐波那 ...