CF1076D Edge Deletion 最短路径树+bfs
题目描述
You are given an undirected connected weighted graph consisting of n n n vertices and m m m edges. Let's denote the length of the shortest path from vertex 1 1 1 to vertex i i i as di d_i di .
You have to erase some edges of the graph so that at most k k k edges remain. Let's call a vertex i i i good if there still exists a path from 1 1 1 to i i i with length di d_i di after erasing the edges.
Your goal is to erase the edges in such a way that the number of good vertices is maximized.
输入输出格式
输入格式:
The first line contains three integers n n n , m m m and k k k ( 2≤n≤3⋅105 2 \le n \le 3 \cdot 10^5 2≤n≤3⋅105 , 1≤m≤3⋅105 1 \le m \le 3 \cdot 10^5 1≤m≤3⋅105 , n−1≤m n - 1 \le m n−1≤m , 0≤k≤m 0 \le k \le m 0≤k≤m
) — the number of vertices and edges in the graph, and the maximum
number of edges that can be retained in the graph, respectively.
Then m m m lines follow, each containing three integers x x x , y y y , w w w ( 1≤x,y≤n 1 \le x, y \le n 1≤x,y≤n , x≠y x \ne y x≠y , 1≤w≤109 1 \le w \le 10^9 1≤w≤109 ), denoting an edge connecting vertices x x x and y y y and having weight w w w .
The given graph is connected (any vertex can be reached from any
other vertex) and simple (there are no self-loops, and for each
unordered pair of vertices there exists at most one edge connecting
these vertices).
输出格式:
In the first line print e e e — the number of edges that should remain in the graph ( 0≤e≤k 0 \le e \le k 0≤e≤k ).
In the second line print e e e distinct integers from 1 1 1 to m m m
— the indices of edges that should remain in the graph. Edges are
numbered in the same order they are given in the input. The number of
good vertices should be as large as possible.
输入输出样例
4 5 2
4 1 8
2 4 1
2 1 3
3 4 9
3 1 5
2
3 2 n 个点 m条边的连通图,只能最多保留K条边,最后要满足从1出发到其他节点最短距离不变的点最多,问方案(边)
先 dijkstra 一下,保存一下父亲和儿子节点以及边的编号;
最后 bfs一下,每次如果此时的 K>0,那么就选择改边;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 400005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n, m, k;
int head[maxn<<1];
struct node {
int to;
ll dis;
node(){}
node(int to,ll dis):to(to),dis(dis){} bool operator < (const node&rhs)const {
return dis > rhs.dis;
}
}edge[maxn<<1]; struct Edge {
int id;
int v; ll w;
int nxt; Edge(){}
Edge(int id,int v,int w):id(id),v(v),w(w){} }EDGE[maxn<<1]; ll dis[maxn];
bool vis[maxn];
int fath[maxn], fathedge[maxn];
vector<Edge>G[maxn]; void addedge(int i, int u, int v, int w) {
G[u].push_back(Edge(i, v, w)); G[v].push_back(Edge(i, u, w));
} priority_queue<node>pq; void dijkstra() {
memset(dis, 0x3f, sizeof(dis)); ms(vis);
dis[1] = 0; vis[1] = 0;
fath[1] = 1;
pq.push(node(1, 0));
while (!pq.empty()) {
node tmp = pq.top(); pq.pop();
int u = tmp.to;
if (vis[u])continue; vis[u] = 1;
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i].v;
if (dis[v] > dis[u] + (ll)G[u][i].w) {
dis[v] = dis[u] + (ll)G[u][i].w;
fath[v] = u; fathedge[v] = G[u][i].id;
pq.push(node(v, (ll)dis[v]));
}
}
}
} vector<int>son[maxn];
vector<int>res;
queue<int>q; void bfs() {
q.push(1);
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = 0; i < son[u].size(); i++) {
int v = son[u][i];
if (k > 0) {
res.push_back(fathedge[v]); q.push(v); k--;
}
else
break;
}
}
} int main()
{
//ios::sync_with_stdio(0);
rdint(n); rdint(m); rdint(k);
for (int i = 1; i <= m; i++) {
int u, v, w; rdint(u); rdint(v); rdint(w);
addedge(i, u, v, w);
}
dijkstra();
for (int i = 2; i <= n; i++) {
son[fath[i]].push_back(i);
}
bfs();
cout << res.size() << endl;
for (int i = 0; i < res.size(); i++) {
cout << res[i] << ' ';
}
cout << endl;
return 0;
}
CF1076D Edge Deletion 最短路径树+bfs的更多相关文章
- CF1076D Edge Deletion
洛谷传送门 cf传送门 这道题作为div.2的D题,被我一眼秒了我觉得十分荣幸,然后就开始写,然后就写了好久. AC之后看网上的题解,发现好多最短路树的,猛然发现我写的好复杂啊,结果还看到了直接一遍d ...
- CF1076D Edge Deletion 最短路树
问题描述 Codeforces 洛谷(有翻译) 题解 最短路树,是一棵在最短路过程中构建的树. 在\(\mathrm{Dijkstra}\)过程中,如果最终点\(y\)是由点\(x\)转移得到的,则在 ...
- bzoj 4016 [FJOI2014]最短路径树问题(最短路径树+树分治)
4016: [FJOI2014]最短路径树问题 Time Limit: 5 Sec Memory Limit: 512 MBSubmit: 426 Solved: 147[Submit][Stat ...
- Codeforces 1076D Edge Deletion(最短路树)
题目链接:Edge Deletion 题意:给定一张n个顶点,m条边的带权无向图,已知从顶点1到各个顶点的最短路径为di,现要求保留最多k条边,使得从顶点1到各个顶点的最短距离为di的顶点最多.输出m ...
- [BZOJ4016][FJOI2014]最短路径树问题
[BZOJ4016][FJOI2014]最短路径树问题 试题描述 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长 ...
- HDU4871 Shortest-path tree(最短路径树 + 树的点分治)
题目大概要先求一张边有权的图的根为1的最短路径树,要满足根到各点路径序列的字典序最小:然后求这棵最短路径树包含k个结点的最长路径的长度和个数. 首先先构造出这棵字典序最小的最短路径树..好吧,我太傻逼 ...
- POJ3013 Big Christmas Tree(最短路径树)
题目大概说给一张点和边都有权的图,现在要求其一棵以1结点为根的生成树使树的边权和最小,树边权 = 对应的图边权 * 树边末端点为根的子树所有结点对于图顶点的点权和. 要求∑(边权*子树点权和),等价于 ...
- LA 4080 (多源最短路径+边修改+最短路径树)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32266 题目大意:①先求任意两点间的最短路径累加和,其中不连通的边 ...
- [FJOI 2014]最短路径树问题
Description 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长度最短的路径,则选择经过的顶点序列字典序最 ...
随机推荐
- windows下python访问ipv6报错
错误 Traceback (most recent call last): File , in <module> app.run() File , in run return wsgi.r ...
- python对MySQL进行数据的插入、更新和删除之后需要commit,数据库才会真的有数据操作。(待日后更新)
今天在尝试用下面的python代码对MySQL进行数据的插入.更新和删除时, 突然发现代码执行成功, 通过代码查询也显示数据已经插入或更新, 但是当我在MySQL客户端通过SQL语句查询时, 数据库中 ...
- CreateRemoteThread 远程dll注入
1.dll中的内容 // dllmain.cpp : 定义 DLL 应用程序的入口点.#include "stdafx.h" BOOL APIENTRY DllMain( HMOD ...
- linux命令-passwd
修改密码 #passwd 新密码 重新输入密码 #passwd dennywang ////命令+用户名 ////////////////////////////////////////////// ...
- 数据库理论-范式(1NF、2NF、3NF)
范式是“符合某一种级别的关系模式的集合,表示一个关系内部各属性之间的联系的合理化程度”. 第一范式(1NF)是指数据库表的每一列都是不可分割的基本数据项.(每个属性不可分割)第二范式(2NF)要求数据 ...
- day70-oracle PLSQL_01基本语法
PLSQL是一种程序,和java一样都是一种程序. sql developer是基于java的jdbc连接数据库.根据java的jdbc,只要有数据库的驱动,就可以连接这个数据库.这个工具默认不需要任 ...
- Codeforces 1142B Lynyrd Skynyrd
---恢复内容开始--- 题意:给你一个排列p和数组a,有t组询问,每次询问一个区间的子序列中是否有p的一个循环排列. 思路:以p = [3, 1, 2]举例, 我们扫描数组b,假设当前数字是1,那么 ...
- cocos2d-x坐标系详解
cocos2d-x官方文档 笛卡尔坐标系 不同坐标系简介 笛卡尔坐标系 你可能上学的时候就已经知道“笛卡尔坐标系”了,它在几何课本里经常用到.如果你已经忘得差不多了,下面这些图片可以很快唤起你的记忆: ...
- 【摘自张宴的"实战:Nginx"】try_files指令
语法:try_files param1 [param2...paramN] fallback 默认值:none 使用环境: location 该指令用于告诉nginx测试每个文件是否存在,并且使用首先 ...
- 友善之臂smart210 3G网卡配置说明
1.命令行输入 3g-ppp /etc/3g-modem/12d1.1446.12d1.1001 2.call-ppp wcdma 3. 你到etc目录里grep一下192.168.1.1 sant ...