思路:乍一看好像和线性代数没什么关系。我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态为:u[1]*mp[1][i]^u[2]*mp[2][i]....^u[n]*mp[n][i](或者改为相加 % 2)。显然,前式等于B[i],所以,问题转化为了求u的解个数:MP*U = B。注意MP矩阵的写法。

关于矩阵:

r(A) = r(A,b)           有解

r(A) = r(A,b) = n     有唯一解     (n是未知量的个数,即A的列数)

r(A) = r(A,b) < n     有无穷多解

参考:开关问题 POJ - 1830 高斯消元

代码:

#include<queue>
#include<cstring>
#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<iostream>
#include<algorithm>
typedef long long ll;
const int maxn = + ;
const int seed = ;
const ll MOD = 1e9 + ;
const int INF = 0x3f3f3f3f;
using namespace std;
int A[maxn][maxn], B[maxn], n;
void Gauss(){
ll R = ;
int row = ;
for(int i = ; i <= n && row <= n; i++,row++){
int max_r = row;
for(int j = row + ; j <= n; j++){
if(A[j][i] > A[row][i]){
max_r = j;break;
}
}
if(max_r != row){
for(int k = i; k <= n + ; k++)
swap(A[max_r][k], A[row][k]);
}
if(A[row][i] == ){
row--;
continue;
}
R++;
for(int j = row + ; j <= n; j++){
if(A[j][i]){
for(int k = i; k <= n + ; k++)
A[j][k] = (A[j][k] - A[row][k] + ) % ;
}
}
}
for(int i = row; i <= n; i++){
if(A[i][n + ]){
printf("Oh,it's impossible~!!\n");
return;
}
}
R = n - R;
R = << R;
printf("%lld\n", R);
}
int main(){
int T;
scanf("%d", &T);
while(T--){
scanf("%d", &n);
memset(A, , sizeof(A));
for(int i = ; i <= n; i++)
scanf("%d", &B[i]);
for(int i = ; i <= n; i++){
int v;
scanf("%d", &v);
A[i][n + ] = B[i] ^ v;
A[i][i] = ;
}
int u, v;
while(scanf("%d%d", &u , &v) && u + v){
A[v][u] = ;
}
Gauss();
}
return ;
}

POJ 1830 开关问题(高斯消元)题解的更多相关文章

  1. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  2. POJ 1830 开关问题 (高斯消元)

    题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...

  3. POJ 1830 开关问题 [高斯消元XOR]

    和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...

  4. POJ.1830.开关问题(高斯消元 异或方程组)

    题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...

  5. POJ 3185 The Water Bowls 【一维开关问题 高斯消元】

    任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  6. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  7. POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)

    pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...

  8. BZOJ 1013 | 一份写了一堆注释的高斯消元题解

    题意 给出\(n\)维直角坐标系中\(n + 1\)个点的坐标,它们都在一个\(n\)维球面上,求球心坐标. 题解 设球面上某两个点坐标为\((a_1, a_2, ... a_n)\)和\((b_1, ...

  9. A - The Water Bowls POJ - 3185 (bfs||高斯消元)

    题目链接:https://vjudge.net/contest/276374#problem/A 题目大意:给你20个杯子,每一次操作,假设当前是对第i个位置进行操作,那么第i个位置,第i+1个位置, ...

  10. POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)

    依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...

随机推荐

  1. 洛谷P1941 飞扬的小鸟 [noip2014] 背包

    正解:背包 解题报告: 话说好久没做背包的题了,都有些陌生了?这几天加强基础题目多刷点儿dp和背包趴qwq 其实这题是95...然后我下了我错的那个测试点,我答案是9874正解是9875...然后读入 ...

  2. maven报错集

    1.install报错解决[致命错误: 在类路径或引导类路径中找不到程序包 java.lang] Windows分隔符英文分号 <bootclasspath>${java.home}/li ...

  3. Java非静态内部类为什么不能有静态成员

    我们可以把InnerClass看成OuterClass的非静态成员,它的初始化必须在外部类对象创建后以后进行,要加载InnerClass必须在实例化OuterClass之后完成 ,java虚拟机要求所 ...

  4. iOS UI基础-6.0 UIActionSheet的使用

    UIActionSheet是在iOS弹出的选择按钮项,可以添加多项,并为每项添加点击事件. 使用 1.需要实现UIActionSheetDelegate  协议 @interface NJWisdom ...

  5. AspxGridView点滴

    1:页码设置 1>: <SettingsPager Summary-Text="当前第 {0} 页 总共 {1} 页 ({2} 条记录)"></Settin ...

  6. 7.7 Models -- Working with Records

    Modifying Attributes 1. 一旦一条record被加载,你可以开始改变它的属性.在Ember.js对象中属性的行为就像正常的属性.作出改变就像设置你想要改变的属性一样简单: var ...

  7. virtualBox虚拟机联网

    1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

  8. SSH无密码登录:只需两个简单步骤 (Linux)

    最后更新 2017年4月8日 分类 最新文章 服务器安全 标签 RSA SSH Key 非对称加密 如果你管理一台Linux服务器,那么你就会知道每次SSH登录时或者使用scp复制文件时都要输入密码是 ...

  9. SQL中SELECT INTO和INSERT INTO SELECT语句介绍

    表复制是经常要用到的操作,下面就将为您介绍SQL中SELECT INTO和INSERT INTO SELECT语句,供您参考. Insert是T-sql中常用语句,Insert INTO table( ...

  10. Typecho博客让文章列表页只显示摘要的方法

    在当前主题的 index.php 文件中找到代码 <?php $this->content('阅读剩余部分...'); ?> 将其替换为 <?php $this->exc ...