BZOJ.3329.Xorequ(数位DP)
x^3x=2x -> x^2x=3x
因为ab+((a&b)<<1)=a+b,x2x=x+2x,所以x和2x的二进制表示中不存在相邻的1。
(或者,因为x+2x=3x,所以x^2x没有抵消任何的1,所以x和2x没有相邻的1)
那么第一问数位DP,第二问上界为\(2^n\),按位DP就行了。
\(f[i]\)表示到第\(i\)位的方案数。每位要么填\(0\)要么填\(1\),所以\(f[i]=f[i-1]+f[i-2]\)。就是斐波那契数列(从斐波那契表示法也能看出与这个DP的类似)。
答案是\(f[n+1]\)(\(2^n\)是\(n+1\)位。。==)
好像第一问能用类似二进制拆分的方法O(64)做?https://blog.csdn.net/jr_mz/article/details/50351557 。不想看了。
//824kb 16ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define mod 1000000007
typedef long long LL;
const int N=66;
int bit[N];
LL f[N][2];
bool vis[N][2];
struct Matrix
{
int a[2][2];
Matrix operator *(const Matrix &x)const
{
Matrix res;
for(int i=0; i<2; ++i)
for(int j=0; j<2; ++j)
{
LL tmp=1ll*a[i][0]*x.a[0][j]+1ll*a[i][1]*x.a[1][j];
res.a[i][j]=tmp%mod;
}
return res;
}
};
inline LL read()
{
LL now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int FP(Matrix x,LL k)
{
Matrix t=x;
for(--k; k; k>>=1,x=x*x)
if(k&1) t=t*x;
return (t.a[0][0]+t.a[0][1])%mod;
return t.a[0][0];
}
LL DFS(int x,int lim,int las)
{
if(!x) return 1;
if(!lim && vis[x][las]) return f[x][las];
LL res=0; int up=lim?bit[x]:1;
res+=DFS(x-1,lim&&!up,0);
if(up&&!las) res+=DFS(x-1,lim&&up,1);
if(!lim) vis[x][las]=1,f[x][las]=res;
return res;
}
LL Solve(LL n)
{
int cnt=0;
for(; n; bit[++cnt]=n&1, n>>=1);
return DFS(cnt,1,0)-1;
}
int main()
{
Matrix mat;
mat.a[0][0]=mat.a[0][1]=mat.a[1][0]=1, mat.a[1][1]=0;
for(int T=read(); T--; )
{
LL n=read();
printf("%lld\n%d\n",Solve(n),FP(mat,n));
}
return 0;
}
BZOJ.3329.Xorequ(数位DP)的更多相关文章
- BZOJ 3329: Xorequ [数位DP 矩阵乘法]
3329: Xorequ 题意:\(\le n \le 10^18\)和\(\le 2^n\)中满足\(x\oplus 3x = 2x\)的解的个数,第二问模1e9+7 \(x\oplus 2x = ...
- BZOJ 3329 Xorequ (数位DP、矩阵乘法)
手动博客搬家: 本文发表于20181105 23:18:54, 原地址https://blog.csdn.net/suncongbo/article/details/83758728 题目链接 htt ...
- BZOJ 3329 - Xorequ - 数位DP, 矩乘
Solution 发现 $x \ xor \ 2x = 3x$ 仅当 $x$ 的二进制中没有相邻的 $1$ 对于第一个问题就可以进行数位DP 了. 但是对于第二个问题, 我们只能通过递推 打表 来算 ...
- BZOJ 3329: Xorequ(数位dp+递推)
传送门 解题思路 可以把原式移项得\(x\)^\(2x\)=\(3x\),而\(x+2x=3x\),说明\(x\)二进制下不能有两个连续的\(1\).那么第一问就是一个简单的数位\(dp\),第二问考 ...
- BZOJ 3329 Xorequ 数字DP+矩阵乘法
标题效果:特定n,乞讨[1,n]内[1,2^n]差多少x满足x^3x=2x x^3x=2x相当于x^2x = 3x 和3x=x+2x 和2x=x<<1 因此x满足条件IFFx&(x ...
- bzoj 3329: Xorequ【数位dp+矩阵乘法】
注意第一问不取模!!! 因为a+b=a|b+a&b,a^b=a|b-a&b,所以a+b=a^b+2(a&b) x^3x==2x可根据异或的性质以转成x^2x==3x,根据上面的 ...
- BZOJ3329 Xorequ(数位DP)
题目大意:x xor 2x=3x(与x xor 3x=2x等价)求满足等式且小于n的x的个数,与满足等式小于2n的数的个数. 因为异或是不进位的二进制加法,那么因为结果正好和加法相同,那么说明x在二进 ...
- [BZOJ 3329]Xorequ
Description 题库链接 给出 \(n\) ,分别求 \(\leq n\) 和 \(\leq 2^n\) 的满足方程 \[x\oplus 3x=2x\] 的正整数解个数. \(1\leq n\ ...
- bzoj 3209 bzoj1799 数位dp
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2267 Solved: 1040[Submit][Status][Disc ...
随机推荐
- 【转】Python中的字符串与字符编码
[转]Python中的字符串与字符编码 本节内容: 前言 相关概念 Python中的默认编码 Python2与Python3中对字符串的支持 字符编码转换 一.前言 Python中的字符编码是个老生常 ...
- 【Connection Events】【BLE】【原创】
Connection Events 本人在TI官网的学习笔记,现整理如下 两台BLE设备建立连接后,所有的通信事件都是通过Connection Events中发生的 上图为两 ...
- IntelliJ IDEA创建JavaWeb工程及配置Tomcat部署
步骤: 在WEB-INF 下创建classes 和 lib 两个文件夹 右上角一个蓝色的按钮... Modules选项卡,Paths下的配置...输出路径选择classes Dependencies选 ...
- SQL类型转换和数学函数
- GuzzleHttp 请求设置超时时间
之前调用一个三方的 WEB API,大量的请求超时,导致 PHP 进程被占用完.整个网站一直报 504. 其中一个优化措施就是对三方 API 调用设置超时时间. use GuzzleHttp\Clie ...
- 学习Struts2经验总结
一.struts 访问路径问题 1) Struts2的思想:主要围着“action”转,只要找到“action”它就知道自己该干嘛了. 首先配置struts.xml ,我们可以明白的看到,action ...
- python 全栈开发,Day52(关于DOM操作的相关案例,JS中的面向对象,定时器,BOM,client、offset、scroll系列)
昨日作业讲解: 京东购物车 京东购物车效果: 实现原理: 用2个盒子,就可以完整效果. 先让上面的小盒子向下移动1px,此时就出现了压盖效果.小盒子设置z-index压盖大盒子,将小盒子的下边框去掉, ...
- scanf的一个问题(暂未解决)
如下代码,没有按照预想的那样运行: int a; char b; printf("input a integer\n"); scanf("%d", &a ...
- 【C++ Primer 第13章】6.对象移动
右值引用 左值和右值 (1)两者区别: ①左值:能对表达式取地址.或具名对象/变量.一般指表达式结束后依然存在的持久对象. ②右值:不能对表达式取地址,或匿名对象.一般指表达式结束就不再存在的临时对象 ...
- webpack - require 概要
webpack 是一个预编译模块打包工具,它只会对使用到的模块进行打包. 一个模块是否被使用?可以根据该模块是否被 require 来判断.如果require时指定的是具体的模块名称与正确的路径,那么 ...