1、代码

%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 5.17 \n\n'); banner();
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % -------------------------------------------------------------------------------------
% X(k) is 10-point DFTs of real-valued sequence x(n)
% X(k) = [10, -2+3j, 3+4j, 2-3j, 4+5j, 12, 4-5j, 2+3j, 3-4j, -2-3j]
% N = 10 k=[0:9]
% 1 y(n) = x((2-n))10
% ------------------------------------------------------------------------------------- k1 = [0:9];
Xk_DFT = [10, -2+3j, 3+4j, 2-3j, 4+5j, 12, 4-5j, 2+3j, 3-4j, -2-3j];
N1 = length(Xk_DFT); % length is 10 magXk_DFT = abs( [ Xk_DFT ] ); % DFT magnitude
angXk_DFT = angle( [Xk_DFT] )/pi; % DFT angle
realXk_DFT = real(Xk_DFT); imagXk_DFT = imag(Xk_DFT); figure('NumberTitle', 'off', 'Name', 'P5.17.1 X(k), DFT of x(n)')
set(gcf,'Color','white');
subplot(2,2,1); stem(k1, magXk_DFT);
xlabel('k'); ylabel('magnitude(k)');
title('magnitude DFT of x(n), N=10'); grid on;
subplot(2,2,3); stem(k1, angXk_DFT);
%axis([-N/2, N/2, -0.5, 50.5]);
xlabel('k'); ylabel('angle(k)');
title('angle DFT of x(n), N=10'); grid on;
subplot(2,2,2); stem(k1, realXk_DFT);
xlabel('k'); ylabel('real (k)');
title('real DFT of x(n), N=10'); grid on;
subplot(2,2,4); stem(k1, imagXk_DFT);
%axis([-N/2, N/2, -0.5, 50.5]);
xlabel('k'); ylabel('imag (k)');
title('imag DFT of x(n), N=10'); grid on; [xn] = real(idft(Xk_DFT, N1)); % real-valued sequence
n = [0 : N1-1]; % +++++++++++++++++++++++++++++++++++++++++++++++++++++++
% 1st way to get y(n)-----circular shifft
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++
xn_cirfold = xn(mod(-n,N1)+1);
m = 2; % shift
yn1 = cirshftt(xn_cirfold, m, length(xn)); Xfk_DFT = dft(xn_cirfold, N1);
magXfk_DFT = abs( [ Xfk_DFT ] ); % DFT magnitude
angXfk_DFT = angle( [Xfk_DFT] )/pi; % DFT angle
realXfk_DFT = real(Xfk_DFT); imagXfk_DFT = imag(Xfk_DFT); figure('NumberTitle', 'off', 'Name', 'P5.17.1 X((-k)), DFT of x((-n))')
set(gcf,'Color','white');
subplot(2,2,1); stem(k1, magXfk_DFT);
xlabel('k'); ylabel('magnitude(k)');
title('magnitude DFT of x((-n)), N=10'); grid on;
subplot(2,2,3); stem(k1, angXfk_DFT);
%axis([-N/2, N/2, -0.5, 50.5]);
xlabel('k'); ylabel('angle(k)');
title('angle DFT of x((-n)), N=10'); grid on;
subplot(2,2,2); stem(k1, realXfk_DFT);
xlabel('k'); ylabel('real (k)');
title('real DFT of x((-n)), N=10'); grid on;
subplot(2,2,4); stem(k1, imagXfk_DFT);
axis([0, 10, -5, 5.05]);
xlabel('k'); ylabel('imag (k)');
title('imag DFT of x((-n)), N=10'); grid on; % +++++++++++++++++++++++++++++++++++++++++++++++++++++++
% 2ed way to get y(n)-----IDFT of Y(k)
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++
k1 = [0:9];
Yk_DFT = exp(-j*2*pi*(2*k1)/10) .* Xk_DFT(mod(-k1, N1)+1);
N1 = length(Yk_DFT); % length is 10 magYk_DFT = abs( [ Yk_DFT ] ); % DFT magnitude
angYk_DFT = angle( [Yk_DFT] )/pi; % DFT angle
realYk_DFT = real(Yk_DFT); imagYk_DFT = imag(Yk_DFT); figure('NumberTitle', 'off', 'Name', 'P5.17.1 DFT(k) of y(n)')
set(gcf,'Color','white');
subplot(2,2,1); stem(k1, magYk_DFT);
xlabel('k'); ylabel('magnitude(k)');
title('magnitude DFT of y(n), N=10'); grid on;
subplot(2,2,3); stem(k1, angYk_DFT);
xlabel('k'); ylabel('angle(k)');
title('angle DFT of y(n), N=10'); grid on;
subplot(2,2,2); stem(k1, realYk_DFT);
xlabel('k'); ylabel('real (k)');
title('real DFT of y(n), N=10'); grid on;
subplot(2,2,4); stem(k1, imagYk_DFT);
%axis([-N/2, N/2, -0.5, 50.5]);
xlabel('k'); ylabel('imag (k)');
title('imag DFT of y(n), N=10'); grid on; [yn2] = real(idft(Yk_DFT, N1));
n = [0 : N1-1]; figure('NumberTitle', 'off', 'Name', 'P5.17.1 x(n) & y(n)')
set(gcf,'Color','white');
subplot(2,2,1); stem(n, xn);
xlabel('n'); ylabel('x(n)');
title('x(n), IDFT of X(k)'); grid on;
subplot(2,2,2); stem(n, yn1);
xlabel('n'); ylabel('y(n)');
title('y(n) by circular shift x((2-n))_N N=10'); grid on;
subplot(2,2,3); stem(n, xn_cirfold);
xlabel('n'); ylabel('x((-n))');
title('x((-n)) N=10'); grid on;
subplot(2,2,4); stem(n, yn2);
xlabel('n'); ylabel('y(n)');
title('y(n) by IDFT of Y(k)'); grid on;

  运行结果:

4、代码:

%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 5.17 \n\n'); banner();
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % -------------------------------------------------------------------------------------
% X(k) is 10-point DFTs of real-valued sequence x(n)
% X(k) = [10, -2+3j, 3+4j, 2-3j, 4+5j, 12, 4-5j, 2+3j, 3-4j, -2-3j]
% N = 10 k=[0:9]
% 4 y(n) = x(n) Circular-Conv x((-n))10
% ------------------------------------------------------------------------------------- k1 = [0:9];
Xk_DFT = [10, -2+3j, 3+4j, 2-3j, 4+5j, 12, 4-5j, 2+3j, 3-4j, -2-3j];
N1 = length(Xk_DFT); % length is 10 magXk_DFT = abs( [ Xk_DFT ] ); % DFT magnitude
angXk_DFT = angle( [Xk_DFT] )/pi; % DFT angle
realXk_DFT = real(Xk_DFT); imagXk_DFT = imag(Xk_DFT); figure('NumberTitle', 'off', 'Name', 'P5.17.4 X(k), DFT of x(n)')
set(gcf,'Color','white');
subplot(2,2,1); stem(k1, magXk_DFT);
xlabel('k'); ylabel('magnitude(k)');
title('magnitude DFT of x(n), N=10'); grid on;
subplot(2,2,3); stem(k1, angXk_DFT);
%axis([-N/2, N/2, -0.5, 50.5]);
xlabel('k'); ylabel('angle(k)');
title('angle DFT of x(n), N=10'); grid on;
subplot(2,2,2); stem(k1, realXk_DFT);
xlabel('k'); ylabel('real (k)');
title('real DFT of x(n), N=10'); grid on;
subplot(2,2,4); stem(k1, imagXk_DFT);
%axis([-N/2, N/2, -0.5, 50.5]);
xlabel('k'); ylabel('imag (k)');
title('imag DFT of x(n), N=10'); grid on; [xn] = real(idft(Xk_DFT, N1)); % real-valued sequence
n = [0 : N1-1]; % +++++++++++++++++++++++++++++++++++++++++++++++++++++++
% 1st way to get y(n)-----circular
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++
xn_cirfold = xn(mod(-n,N1)+1);
yn1 = circonvt(xn, xn_cirfold, N1); % +++++++++++++++++++++++++++++++++++++++++++++++++++++++
% 2ed way to get y(n)-----IDFT of Y(k)
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++
k1 = [0:9];
Xfk_DFT = dft(xn_cirfold, N1); Yk_DFT = Xk_DFT .* Xfk_DFT;
N1 = length(Yk_DFT); % length is 10 magYk_DFT = abs( [ Yk_DFT ] ); % DFT magnitude
angYk_DFT = angle( [Yk_DFT] )/pi; % DFT angle
realYk_DFT = real(Yk_DFT); imagYk_DFT = imag(Yk_DFT); figure('NumberTitle', 'off', 'Name', 'P5.17.4 DFT(k) of y(n)')
set(gcf,'Color','white');
subplot(2,2,1); stem(k1, magYk_DFT);
xlabel('k'); ylabel('magnitude(k)');
title('magnitude DFT of y(n), N=10'); grid on;
subplot(2,2,3); stem(k1, angYk_DFT);
xlabel('k'); ylabel('angle(k)');
title('angle DFT of y(n), N=10'); grid on;
subplot(2,2,2); stem(k1, realYk_DFT);
xlabel('k'); ylabel('real (k)');
title('real DFT of y(n), N=10'); grid on;
subplot(2,2,4); stem(k1, imagYk_DFT);
%axis([-N/2, N/2, -0.5, 50.5]);
xlabel('k'); ylabel('imag (k)');
title('imag DFT of y(n), N=10'); grid on; [yn2] = real(idft(Yk_DFT, N1));
n = [0 : N1-1]; figure('NumberTitle', 'off', 'Name', 'P5.17.4 x(n) & y(n)')
set(gcf,'Color','white');
subplot(2,2,1); stem(n, xn);
xlabel('n'); ylabel('x(n)');
title('x(n), IDFT of X(k)'); grid on;
subplot(2,2,2); stem(n, yn1);
xlabel('n'); ylabel('y(n)');
title('y(n) by x(n) Circular-Conv x((-n))_N N=10'); grid on;
%subplot(2,2,3); stem(n, xn_cirfold);
%xlabel('n'); ylabel('x((-n))');
%title('x((-n)) N=10'); grid on;
subplot(2,2,4); stem(n, yn2);
xlabel('n'); ylabel('y(n)');
title('y(n) by IDFT of Y(k)'); grid on;

  运行结果:

《DSP using MATLAB》Problem 5.17的更多相关文章

  1. 《DSP using MATLAB》Problem 6.17

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  2. 《DSP using MATLAB》Problem 3.17

    用差分方程两边进行z变换,再变量带换得到频率响应函数(或转移函数,即LTI系统脉冲响应的DTFT). 代码: %% ------------------------------------------ ...

  3. 《DSP using MATLAB》Problem 2.17

    1.代码: %% ------------------------------------------------------------------------ %% Output Info abo ...

  4. 《DSP using MATLAB》Problem 8.17

    代码: %% ------------------------------------------------------------------------ %% Output Info about ...

  5. 《DSP using MATLAB》Problem 4.17

  6. 《DSP using MATLAB》Problem 5.22

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% O ...

  7. 《DSP using MATLAB》Problem 5.15

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  8. 《DSP using MATLAB》Problem 2.18

    1.代码: function [y, H] = conv_tp(h, x) % Linear Convolution using Toeplitz Matrix % ----------------- ...

  9. 《DSP using MATLAB》Problem 7.28

    又是一年五一节,朋友圈都是晒名山大川的,晒脑袋的,我这没钱的待在家里上网转转吧 频率采样法设计带通滤波器,过渡带中有一个样点 代码: %% ++++++++++++++++++++++++++++++ ...

随机推荐

  1. linux文件管理 文件搜索

    文件搜索命令find 'find [搜索范围] [搜索条件]' 搜索文件 find / -name install.log #避免大范围搜索,会非常消耗系统资源 #find是在系统当中搜索符合条件的文 ...

  2. 【转】用深度学习做crowd density estimation

    本博文主要是CVPR2016的<Single-Image Crowd Counting via Multi-Column Convolutional Neural Network>这篇文章 ...

  3. vue-2-计算属性和观察者

    <div id="example"> <p>Original message: "{{ message }}"</p> &l ...

  4. jQuery中的事件与驱动

    1.jQuery中的事件 在jQuery中,事件总体分为俩大类:基础事件和符合事件.  jQuery中的简单事件,与Javascript中的事件 几乎一样,都含有鼠标事件.键盘事件.载件事件等,只是其 ...

  5. relativeURL 相对URL的坑

    我正在尝试实现一个使用RestKit的iOS应用程序.在我迄今为止看到的所有示例中,以下代码用于创建URL: NSURL *baseURL = [NSURL URLWithString:@" ...

  6. Linux3.10.0块IO子系统流程(3)-- SCSI策略例程

    很长时间以来,Linux块设备使用了一种称为“蓄流/泄流”(plugging/unplugging)的技术来改进吞吐率.简单而言,这种工作方式类似浴盆排水系统的塞子.当IO被提交时,它被储存在一个队列 ...

  7. 开发框架DevExtreme发布v18.2.4|附下载

    DevExtreme Complete Subscription是性能最优的 HTML5,CSS 和 JavaScript 移动.Web开发框架,可以直接在Visual Studio集成开发环境,构建 ...

  8. 实现简单的shell sed替换功能

    通过脚本传参数可以实现替换 # -*-coding:utf-8-*- # Author:sunhao import sys f = open('yesterday','r',encoding='utf ...

  9. PMS5003ST传感器

    5003ST传感器已经收到,准备开始DIY PM2.5检测仪       一款可以同时监测空气中颗粒物浓度.甲醛浓度及温湿度的三 合一传感器.其中颗粒物浓度的监测基于激光散射原理,可连续采集并计算单位 ...

  10. POJ 2369 Permutations(置换群概念题)

    Description We remind that the permutation of some final set is a one-to-one mapping of the set onto ...